Atjaunināt sīkdatņu piekrišanu

Federated Learning in the Age of Foundation Models - FL 2024 International Workshops: FL@FM-WWW 2024, Singapore, May 14, 2024; FL@FM-ICME 2024, Niagara Falls, ON, Canada, July 15, 2024; FL@FM-IJCAI 2024, Jeju Island, South Korea, August 5, 2024; and FL@FM-NeurIPS 2024, Vancouver, BC, Canada, December 15, 2024, Revised Selected Papers [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 182 pages, height x width: 235x155 mm, 50 Illustrations, color; 2 Illustrations, black and white; XII, 182 p. 52 illus., 50 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Artificial Intelligence 15501
  • Izdošanas datums: 04-Mar-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031822390
  • ISBN-13: 9783031822391
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 182 pages, height x width: 235x155 mm, 50 Illustrations, color; 2 Illustrations, black and white; XII, 182 p. 52 illus., 50 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Artificial Intelligence 15501
  • Izdošanas datums: 04-Mar-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031822390
  • ISBN-13: 9783031822391
Citas grāmatas par šo tēmu:
This LNAI volume constitutes the post proceedings of International Federated Learning Workshops such as follows:





FL@FM-WWW 2024, FL@FM-ICME 2024, FL@FM-IJCAI 2024 and FL@FM-NeurIPS 2024. This LNAI volume focuses on the following topics:





Efficient Model Adaptation and Personalization, Data Heterogeneity and Incomplete Data, Integration of Specialized Neural Architectures, Frameworks and Tools for Federated Learning, Applications in Domain-Specific Contexts, Unsupervised and Lightweight Learning, and Causal Discovery and Black-Box Optimization.