Atjaunināt sīkdatņu piekrišanu

Federated Learning for Medical Imaging: Principles, Algorithms, and Applications [Mīkstie vāki]

Edited by (Assistant Professor, Electrical and Computer Engineering Department, University of British Columbia, Vancouver, BC, Canada), Edited by (Institute of High Performance Computing (IHPC), Agency for Science, Technology an), Edited by (NVIDIA, Reston, VA, USA)
  • Formāts: Paperback / softback, 230 pages, height x width: 235x191 mm, weight: 450 g
  • Sērija : The MICCAI Society book Series
  • Izdošanas datums: 02-Jun-2025
  • Izdevniecība: Academic Press Inc
  • ISBN-10: 0443236410
  • ISBN-13: 9780443236419
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 144,45 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 230 pages, height x width: 235x191 mm, weight: 450 g
  • Sērija : The MICCAI Society book Series
  • Izdošanas datums: 02-Jun-2025
  • Izdevniecība: Academic Press Inc
  • ISBN-10: 0443236410
  • ISBN-13: 9780443236419
Citas grāmatas par šo tēmu:

Federated Learning for Medical Imaging: Principles, Algorithms, and Applications gives a deep understanding of the technology of federated learning (FL), the architecture of a federated system, and the algorithms for FL. It shows how FL allows multiple medical institutes to collaboratively train and use a precise machine learning (ML) model without sharing private medical data via practical implantation guidance. The book includes real-world case studies and applications of FL, demonstrating how this technology can be used to solve complex problems in medical imaging. The book also provides an understanding of the challenges and limitations of FL for medical imaging, including issues related to data and device heterogeneity, privacy concerns, synchronization and communication, etc.
This book is a complete resource for computer scientists and engineers, as well as clinicians and medical care policy makers, wanting to learn about the application of federated learning to medical imaging.

Section I Fundamentals of FL
1. Background
2. FL Foundations

Section II Advanced Concepts and Methods for Heterogenous Settings
3. FL on Heterogeneous Data
4. FL on long-tail (label)
5. Personalized FL
6. Cross-domain FL

Section III Trustworthy FL
7. FL and Fairness
8. Differential Privacy
9. Security (Attack and Defense) in FL
10. FL + Uncertainty
11. Noisy learning in FL

Section IV Real-world Implementation and Application
12. Image Segmentation
13. Image Reconstruction and Registration
14. Frameworks and Platforms

Section V Afterword
15. Summary and Outlook

Xiaoxiao Li is Assistant Professor, Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada. Ziyue Xu, Senior Scientist, NVIDIA, Santa Clara, California, United States of America. Huazhu Fu, Principal Scientist, Agency for Science, Technology and Research (A*STAR), Singapore.