Atjaunināt sīkdatņu piekrišanu

E-grāmata: Federated Learning for Multimedia Data Processing and Security in Industry 5.0

Edited by (Zhongda Group, Haiyan County, Jiaxing City, Zhejiang Province, China), Edited by (Brandon University, Department of Mathematics and Computer Science, Manitoba, Canada)
  • Formāts: PDF+DRM
  • Sērija : Computing and Networks
  • Izdošanas datums: 13-Jan-2025
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781839537585
  • Formāts - PDF+DRM
  • Cena: 187,84 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Computing and Networks
  • Izdošanas datums: 13-Jan-2025
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781839537585

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book explores how federated learning can solve multimedia data processing and security challenges in Industry 5.0, introduces new research paradigms for the security and privacy preservation of multimedia data, and explores the integration of federated learning with other disruptive technologies.



Industry 5.0 is the upcoming industrial revolution where people will be working together with smart machines and robots, thereby bringing human touch and intelligence back to the decision-making process. Challenges include the security and privacy of sensitive multimedia data and near zero latency for mission critical applications.

Federated learning is a machine learning technique that trains algorithms across multiple decentralized edge devices or servers by holding local data samples without exchanging them. This approach stands in contrast to traditional centralized machine learning techniques where all local datasets are uploaded to one server. This method enables multiple actors to build a common, robust machine learning model without sharing data, thus addressing critical issues such as data privacy, data security, data access rights and access to heterogeneous data.

The objective of this book is to show how federated learning can solve multimedia data processing and security challenges in Industry 5.0. The book introduces new research paradigms for the security and privacy preservation of multimedia data. It provides a detailed discussion on how federated learning can be used to handle big data, preserve privacy, reduce computational and communication costs; and shows how to integrate federated learning with other disruptive technologies including blockchain, digital twins and 5G and beyond.

Federated Learning for Multimedia Data Processing and Security in Industry 5.0 is an essential reference for advanced students, lecturers, and academic and industry researchers working in the fields of machine learning federated learning, computer and network security, data science, multimedia, computer vision and Industry 5.0 applications.

  • Chapter 1: Federated Learning enabled 5G and Beyond for Industry 5.0
  • Chapter 2: Federated Learning for Optimized Communication in Industry 5.0
  • Chapter 3: Federated Learning enabled Digital Twins for Industry 5.0: Perspectives, Challenges, and Future Directions
  • Chapter 4: Collaborative Intelligence: Federated Learning Enabled Edge Computing in Industry 5.0
  • Chapter 5: Infusion of Federated Learning for Cybersecurity in Industry 5.0
  • Chapter 6: Cyber security with Blockchain for Digital Twins
  • Chapter 7: Blockchain-Based Federated Learning for Industry 5.0 Applications
  • Chapter 8: Blockchain Implementation of Public Key Infrastructure for Industry 5.0 Applications
  • Chapter 9: Federated Learning for Supply Chain Management 5.0
  • Chapter 10: Federated Learning for cobots in Industry 5.0
  • Chapter 11: Federated Learning in Medical Education in Industry 5.0
  • Chapter 12: A Comprehensive Survey on Enhanced Privacy Techniques for Federated Learning in Healthcare Systems
  • Chapter 13: FL for Secured Medical Image Analysis
  • Chapter 14: Conclusion
Gautam Srivastava is a full professor in the Department of Mathematics and Computer Science at Brandon University, Manitoba, Canada. He previously worked in the Department of Computer Science at the Faculty of Engineering, University of Victoria. His research focuses on data mining and big data security and privacy. He is involved in research projects with other academics in Norway, Taiwan, Singapore, Canada, and the USA. He has published 400+ papers in high-impact conferences and journals.



Thippa Reddy Gadekallu is a chief engineer at Zhongda Group, Haiyan County, Jiaxing City, Zhejiang Province, China. He is also an associate professor in the School of Information Technology and Engineering at Vellore Institute of Technology, India. He has published 200+ publications in reputed journals and conferences. His areas of research include machine learning, deep neural networks, internet of things, blockchain and computer vision. He is an editor for several international journals.