Atjaunināt sīkdatņu piekrišanu

E-grāmata: Federated Learning: Privacy and Incentive

Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 12500
  • Izdošanas datums: 25-Nov-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030630768
  • Formāts - PDF+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 12500
  • Izdošanas datums: 25-Nov-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030630768

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications.





Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR.





This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.





 
Privacy.- Threats to Federated Learning.- Rethinking Gradients Safety in
Federated Learning.- Rethinking Privacy Preserving Deep Learning: How to
Evaluate and Thwart Privacy Attacks.- Task-Agnostic Privacy-Preserving
Representation Learning via Federated Learning.- Large-Scale Kernel Method
for Vertical Federated Learning.- Towards Byzantine-resilient Federated
Learning via Group-wise Robust Aggregation.- Federated Soft Gradient Boosting
Machine for Streaming Data.- Dealing with Label Quality Disparity In
Federated Learning.- Incentive.- FedCoin: A Peer-to-Peer Payment System for
Federated Learning.- Efficient and Fair Data Valuation for Horizontal
Federated Learning.- A Principled Approach to Data Valuation for Federated
Learning.- A Gamified Research Tool for Incentive Mechanism Design in
Federated Learning.- Budget-bounded Incentives for Federated Learning.-
Collaborative Fairness in Federated Learning.- A Game-Theoretic Framework for
Incentive Mechanism Design in Federated Learning.- Applications.- Federated
Recommendation Systems.- Federated Learning for Open Banking.- Building ICU
In-hospital Mortality Prediction Model with Federated Learning.-
Privacy-preserving Stacking with Application to Cross-organizational Diabetes
Prediction.