Atjaunināt sīkdatņu piekrišanu

Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials 2012 [Hardback]

Edited by , Edited by , Edited by
  • Formāts: Hardback, 486 pages, height x width: 235x155 mm, weight: 916 g, XVIII, 486 p., 1 Hardback
  • Sērija : Topics in Applied Physics 123
  • Izdošanas datums: 14-Mar-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642233651
  • ISBN-13: 9783642233654
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 252,18 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 296,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 486 pages, height x width: 235x155 mm, weight: 916 g, XVIII, 486 p., 1 Hardback
  • Sērija : Topics in Applied Physics 123
  • Izdošanas datums: 14-Mar-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642233651
  • ISBN-13: 9783642233654
Citas grāmatas par šo tēmu:
Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.

This book describes state-of-the-art micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and is exploitable for fabrication of complex microsystems.
Part I Introductory Concepts, Characterization and Optimization Strategies
1 Fundamentals of Femtosecond Laser Modification of Bulk Dielectrics
3(16)
Shane M. Eaton
Giulio Cerullo
Roberto Osellame
1.1 Introduction
3(1)
1.2 Femtosecond Laser-Material Interaction
4(7)
1.2.1 Free Electron Plasma Formation
4(3)
1.2.2 Relaxation and Modification
7(4)
1.3 Exposure Variables and Considerations
11(5)
1.3.1 Focusing
11(2)
1.3.2 Writing Geometry
13(1)
1.3.3 Influence of Exposure Variables Within Low- and High-Repetition Rate Regimes
14(2)
1.4 Summary
16(3)
References
16(3)
2 Imaging of Plasma Dynamics for Controlled Micromachining
19(24)
Jan Siegel
Javier Solis
2.1 Introduction
19(1)
2.2 Assessment of the Interaction of Ultrashort Pulses with Dielectrics Using Optical Probes
20(7)
2.2.1 Interaction Mechanisms and Characteristic Time Scales
20(2)
2.2.2 Time-resolved Optical Techniques
22(1)
2.2.3 Exploiting Spatial Resolution
23(2)
2.2.4 Basic Models for Quantitative Analysis of Experimental Data
25(2)
2.3 Ultrafast Imaging at the Surface of Dielectrics
27(5)
2.3.1 Experimental Configurations and Constraints
27(2)
2.3.2 Transient Plasma Dynamics and Permanent Material Modifications
29(3)
2.4 Ultrafast Imaging in the Bulk of Dielectrics
32(6)
2.4.1 Experimental Configurations and Constraints
32(3)
2.4.2 Transient Plasma Dynamics in Glasses Under Waveguide Writing Conditions: Role of Pulse Duration, Energy, Polarization, and Processing Depth
35(3)
2.5 Outlook and Conclusions
38(5)
References
40(3)
3 Spectroscopic Characterization of Waveguides
43(24)
Denise M. Krol
3.1 Introduction
43(1)
3.2 Spectroscopic Analysis of Glass
44(5)
3.2.1 Fluorescence Spectroscopy
44(3)
3.2.2 Raman Spectroscopy
47(2)
3.2.3 Confocal Imaging
49(1)
3.3 Experimental Equipment and Procedures
49(3)
3.3.1 Femtosecond Laser Systems and Micromachining Procedures
50(1)
3.3.2 Confocal Microscope System and Spectroscopy Procedures
51(1)
3.4 Spectroscopic Analysis of fs-laser Modification in Fused Silica
52(5)
3.4.1 Fluorescence Spectroscopy and Imaging of Waveguides and Bragg Gratings
52(3)
3.4.2 Photobleaching of Defects
55(1)
3.4.3 Raman Spectroscopy and Imaging
55(2)
3.5 Spectroscopic Analysis of Waveguides in Phosphate Glasses
57(6)
3.5.1 Fluorescence Spectroscopy and Imaging of IOG-1
57(2)
3.5.2 Comparison of Waveguides in Fused Silica and IOG-1
59(1)
3.5.3 Raman Spectroscopy and Imaging of Rare Earth-doped Phosphate Glass
60(3)
3.6 Summary
63(4)
References
63(4)
4 Optimizing Laser-Induced Refractive Index Changes in Optical Glasses via Spatial and Temporal Adaptive Beam Engineering
67(26)
Razvan Stoian
4.1 Introduction
67(2)
4.2 Mechanisms of Laser-Induced Refractive Index Changes
69(4)
4.3 Experimental Implementations for Pulse Engineering
73(3)
4.3.1 Spatio-Temporal Beam Shaping
73(2)
4.3.2 Microscopy Based Adaptive Loops
75(1)
4.4 Material Interaction with Tailored Pulses
76(11)
4.4.1 Refractive Index Engineering by Temporally Tailored Pulses
76(2)
4.4.2 Energy Confinement and Size Corrections
78(2)
4.4.3 Adaptive Correction of Wavefront Distortions
80(4)
4.4.4 Dynamic Parallel Processing
84(3)
4.5 Outlook and Conclusions
87(6)
References
88(5)
5 Controlling the Cross-section of Ultrafast Laser Inscribed Optical Waveguides
93(34)
Robert R. Thomson
Nicholas D. Psaila
Henry T. Bookey
Derryck T. Reid
Ajoy K. Kar
5.1 Introduction
93(1)
5.2 The Effect of the Waveguide Cross-section on the Properties of the Guided Modes
94(3)
5.3 The Importance of Controlling the Waveguide Cross-section from a Device Engineering Perspective
97(3)
5.3.1 Effect of Mode Field Distribution on Waveguide Coupling Loss
97(1)
5.3.2 Effect of Mode Field Distribution on Waveguide Propagation Loss
98(1)
5.3.3 Effect of Mode Field Distribution on Evanescent Coupling
99(1)
5.3.4 Effect of Waveguide Asymmetry on Polarisation Dependent Guiding Properties
100(1)
5.4 Experimental Techniques for Measuring the Refractive Index Profile of Ultrafast Laser Inscribed Waveguides
100(5)
5.4.1 Refracted Near-field (RNF) Method
100(1)
5.4.2 Micro-reflectivity
101(1)
5.4.3 Quantitative Phase Microscopy
102(2)
5.4.4 Inverse Helmholtz Technique
104(1)
5.5 Effect of Inscription Parameters on the Waveguide Cross-section
105(3)
5.6 Experimental Techniques for Controlling the Waveguide Cross-section
108(13)
5.6.1 The Astigmatic Beam Shaping Technique
108(3)
5.6.2 The Slit Beam Shaping Technique
111(3)
5.6.3 Waveguide Shaping Using Active Optics
114(4)
5.6.4 Spatiotemporal Focussing
118(2)
5.6.5 The Multiscan Technique
120(1)
5.7 Conclusions and Outlook
121(6)
References
122(5)
6 Quill and Nonreciprocal Ultrafast Laser Writing
127(28)
Peter G. Kazansky
Martynas Beresna
6.1 Introduction
128(1)
6.2 Quill Writing
128(9)
6.3 Anisotropic Bubble Formation
137(2)
6.4 Nonreciprocal Writing
139(10)
6.5 Conclusion
149(6)
References
150(5)
Part II Waveguides and Optical Devices in Glass
7 Passive Photonic Devices in Glass
155(42)
Shane M. Eaton
Peter R. Herman
7.1 Introduction
155(2)
7.2 Characterization of Femtosecond Laser-Written Waveguides
157(4)
7.2.1 Microscope Observation
158(1)
7.2.2 Insertion Loss
158(1)
7.2.3 Mode Profile and Coupling Loss
159(1)
7.2.4 Propagation Loss
160(1)
7.2.5 Refracted Near Field Method
161(1)
7.3 Femtosecond Laser Microfabrication of Optical Waveguides
161(11)
7.3.1 Low-Repetition Rate Regime
162(2)
7.3.2 High-Repetition Rate Regime
164(8)
7.4 Devices
172(20)
7.4.1 Y-Junctions
173(2)
7.4.2 Directional Couplers
175(11)
7.4.3 Mach-Zehnder Interferometers
186(1)
7.4.4 Other Devices
186(6)
7.5 Summary and Future Outlook
192(5)
References
193(4)
8 Fibre Grating Inscription and Applications
197(30)
Nemanja Jovanovic
Alex Fuerbach
Graham D. Marshall
Martin Ams
Michael J. Withford
8.1 Introduction
197(2)
8.2 Review of Gratings Types
199(3)
8.2.1 Long Period Gratings
199(1)
8.2.2 Fibre Bragg Gratings
200(2)
8.3 Point-by-Point Inscribed Gratings
202(4)
8.3.1 Fabrication Methods
202(2)
8.3.2 Development of Femtosecond Laser Direct-Write LPGs
204(1)
8.3.3 Development of Femtosecond Laser Direct-Write FBGs
205(1)
8.4 Phase Mask Inscribed Gratings
206(3)
8.4.1 Fabrication Method
206(1)
8.4.2 Development of Femtosecond Laser-Phase Mask Inscription
207(2)
8.5 Properties of Femtosecond Laser Written Gratings
209(7)
8.5.1 Thermal Stability
209(3)
8.5.2 Stress and Birefringence
212(2)
8.5.3 Photoattenuation
214(2)
8.6 Applications
216(4)
8.6.1 Fibre Lasers
216(2)
8.6.2 Sensors
218(2)
8.6.3 Other Applications
220(1)
8.7 Novel Fibre Types and Challenges
220(2)
8.7.1 Microstructured Optical-Fibres (MOFs)
220(2)
8.7.2 Polymer and Non-linear Fibres
222(1)
8.7.3 Through Jacket Grating Writing
222(1)
8.8 Summary
222(5)
References
223(4)
9 3D Bragg Grating Waveguide Devices
227(38)
Haibin Zhang
Peter R. Herman
9.1 Introduction
227(3)
9.2 Bragg Grating Waveguide Fabrication
230(17)
9.2.1 BGW Fabrication Method 1: Single-pulse Writing
231(7)
9.2.2 BGW Fabrication Method 2: Burst Writing
238(6)
9.2.3 BGW Thermal Stability
244(3)
9.3 BGW Devices
247(12)
9.3.1 Multi-wavelength BGWs
247(3)
9.3.2 Chirped BGWs
250(3)
9.3.3 3D BGW Sensor Network
253(6)
9.4 Summary and Future Outlook
259(6)
References
261(4)
10 Active Photonic Devices
265(30)
Giuseppe Della Valle
Roberto Osellame
10.1 Introduction
265(1)
10.2 Active Ions for Waveguide Devices
266(4)
10.3 Gain Definitions and Measurement Technique
270(7)
10.3.1 Definition of the Main Figures of An Active Waveguide
270(4)
10.3.2 The On/Off Technique for Gain Measurement
274(3)
10.4 Active Waveguides and Amplifiers
277(4)
10.4.1 Internal Gain in Nd-Doped Active Waveguides
277(1)
10.4.2 Waveguide Amplifier in Er:Yb-Doped Phosphate Glass
277(1)
10.4.3 Waveguide Amplifier in Er:Yb-Doped Oxyfluoride Silicate Glass
278(3)
10.4.4 Active Waveguides in New Glass Materials
281(1)
10.5 Waveguide Lasers
281(2)
10.5.1 Waveguide Lasers in Er:Yb-Doped Phosphate Glass
281(2)
10.5.2 Waveguide Laser in Er:Yb-Doped Oxyfluoride Silicate Glass
283(1)
10.6 Advanced Waveguide Lasers
283(6)
10.6.1 Single-Longitudinal-Mode Operation
283(5)
10.6.2 Mode-Locking Regime
288(1)
10.7 Outlook and Conclusions
289(6)
References
290(5)
Part III Waveguides and Optical Devices in Other Transparent Materials
11 Waveguides in Crystalline Materials
295(20)
Matthias Heinrich
Katja Rademaker
Stefan Nolte
11.1 Origins of Refractive Index Changes
295(3)
11.2 Waveguides Characteristics in Various Crystals
298(6)
11.2.1 Waveguide Fabrication in LiNbO3
299(1)
11.2.2 Other Crystals
300(2)
11.2.3 Actively Doped Crystals and Ceramics
302(2)
11.3 Nonlinear Properties
304(2)
11.3.1 Lithium Niobate
304(2)
11.4 Integrated Optical Devices
306(4)
11.4.1 Mach-Zehnder Interferometer
306(1)
11.4.2 Electrooptic Modulator
307(1)
11.4.3 Waveguide Lasers
308(2)
11.5 Conclusion
310(5)
References
311(4)
12 Refractive Index Structures in Polymers
315(36)
Patricia J. Scully
Alexandra Baum
Dun Liu
Walter Perrie
12.1 Introduction
315(1)
12.2 Motivation for Refractive Index Structures in Polymers
316(1)
12.3 Laser Photomodification of PMMA
317(2)
12.3.1 Continuous Wave UV Laser Sources
317(1)
12.3.2 Long Pulse (ns, ps) Laser Sources
317(1)
12.3.3 Ultrashort fs Laser Sources
318(1)
12.4 Waveguiding and Positive/Negative Refractive Index
319(1)
12.5 Direct Writing
320(3)
12.5.1 Simple Transmission Gratings (2D)
321(1)
12.5.2 Production of Waveguides (1D)
322(1)
12.6 Holographic Writing
323(2)
12.7 Comparisons of Commercial and Clinical Grade PMMA
325(1)
12.8 Pulse Duration, Wavelength, and Bandgap Dependence of Refractive Index Modification
325(7)
12.8.1 Pulse Duration Dependence of Refractive Index Modification
326(5)
12.8.2 Effect of Bandgap and Wavelength on Refractive Index Modification
331(1)
12.9 Relating Photochemistry to Writing Conditions
332(4)
12.9.1 Size Exclusion Chromatography
334(1)
12.9.2 Thermal Desorption Volatile Analysis
334(1)
12.9.3 Thermogravimetric Analysis
334(1)
12.9.4 Optical Spectroscopy
335(1)
12.9.5 Etching of Structures
335(1)
12.9.6 Summary of Photochemical Analysis
336(1)
12.10 Effect of Self-Focusing
336(3)
12.11 Effects of Depth
339(1)
12.12 Parallel Processing Using Spatial Light Modulator
340(2)
12.13 Applications of Refractive Index Structures in Polymers
342(1)
12.13.1 Polymer Optical Fibre Sensors and Devices
343(1)
12.14 Summary
343(8)
References
344(7)
Part IV Microsystems and Applications
13 Discrete Optics in Femtosecond Laser Written Waveguide Arrays
351(38)
Alexander Szameit
Felix Dreisow
Stefan Nolte
13.1 Introduction to Waveguide Arrays
351(2)
13.2 Fundamental Principles of Discrete Light Propagation
353(2)
13.3 Basic Experimental Techniques
355(3)
13.3.1 Evanescent Coupling
355(1)
13.3.2 Waveguide Imaging Microscopy
356(1)
13.3.3 Multi-waveguide Excitation
357(1)
13.4 Linear Propagation Effects
358(15)
13.4.1 Straight Lattices
358(7)
13.4.2 Curved Lattices
365(5)
13.4.3 Quantum-Mechanical Analogies
370(3)
13.5 Nonlinear Propagation Effects
373(12)
13.5.1 Nonlinear Refractive Index
373(1)
13.5.2 One-Dimensional Solitons
374(7)
13.5.3 Two-Dimensional Solitons
381(4)
13.6 Conclusions
385(4)
References
386(3)
14 Optofluidic Biochips
389(32)
Rebeca Martinez Vazquez
Giulio Cerullo
Roberta Ramponi
Roberto Osellame
14.1 Introduction
389(3)
14.2 Femtosecond Laser Microfluidic Channel Fabrication
392(8)
14.2.1 Fundamental Physical Mechanisms
392(2)
14.2.2 Microchannel Properties
394(4)
14.2.3 Integration of Optical Waveguides and Microfluidic Channels
398(2)
14.3 Integration of Photonic Sensors in LOCs
400(9)
14.3.1 Cell Sorting
400(2)
14.3.2 Microchip Capillary Electrophoresis
402(3)
14.3.3 Label-Free Sensing with Mach-Zehnder Interferometers
405(4)
14.4 Femtosecond Laser Fabrication of Optofluidic Devices
409(7)
14.4.1 Flow Cytometry
409(2)
14.4.2 Label-Free Sensing with Bragg Gratings
411(2)
14.4.3 Cell Trapping and Stretching
413(3)
14.5 Outlook and Conclusions
416(5)
References
417(4)
15 Microstructuring of Photosensitive Glass
421(22)
Koji Sugioka
15.1 Introduction
421(1)
15.2 Photosensitive Glass
422(6)
15.2.1 Characteristics
422(2)
15.2.2 Microstructuring Procedure
424(1)
15.2.3 Microstructuring Mechanism
425(3)
15.3 Fabrication of Microfluidic Structures
428(2)
15.4 Fabrication of Micro-Optic Structures
430(3)
15.4.1 Micro-Optics
430(1)
15.4.2 Optical Waveguides
431(1)
15.4.3 Integration of Optical Microcomponents
432(1)
15.5 Fabrication of Microchip Devices
433(6)
15.5.1 Microfluidic Dye Laser
433(2)
15.5.2 Optofluidics
435(1)
15.5.3 Nano-Aquarium
436(3)
15.6 Summary
439(4)
References
439(4)
16 Microsystems and Sensors
443(24)
Yves Bellouard
Ali A. Said
Mark Dugan
Philippe Bado
16.1 Introduction
443(1)
16.2 Micro- and Nano-Systems
444(2)
16.2.1 A Brief Overview of Microsystems
444(1)
16.2.2 Issues on Microsystems Integration and Fabrication
444(2)
16.3 Microsystems Fabricated Using Femtosecond Lasers: Review and State of the Art
446(2)
16.3.1 Specificities of Femtosecond Laser-Matter Interaction from the View-Point of Microsystems Design
446(1)
16.3.2 Integrated Optics Devices
447(1)
16.3.3 Opto-Fluidics
448(1)
16.3.4 Micromechanical Functionality
448(1)
16.4 Multifunctional Monolithic System Integration
448(16)
16.4.1 Concept
448(1)
16.4.2 Taxonomy of Individual Elements Used in a Monolithic Design
449(7)
16.4.3 System Integration: Design Strategies and Interfacing
456(1)
16.4.4 Illustration: Micro-Displacement Sensors and Micro-Force Sensors
456(8)
16.5 Summary, Benefits, Future Prospects, and Challenges
464(3)
References
464(3)
17 Ultrashort Laser Welding and Joining
467(12)
Wataru Watanabe
Takayuki Tamaki
Kazuyoshi Itoh
17.1 Introduction
467(1)
17.2 Laser Welding
468(1)
17.3 Ultrashort Laser Welding of Transparent Materials
469(5)
17.3.1 Ultrashort Laser Welding with Low-Repetition Rate
469(4)
17.3.2 Ultrashort Laser Welding with High-Repetition Rate
473(1)
17.4 Outlook and Conclusions
474(5)
References
476(3)
Index 479
Roberto Osellame is a Research Associate at the Institute of Photonics and Nanotechnology (IFN), Milan, Italy, of the National Research Council (CNR). From 2001 he is also a Contract Professor of Experimental Physics at the Politecnico di Milano. His research interests include integrated all-optical devices on nonlinear crystals, femtosecond laser micromachining of transparent material, fabrication and characterization of photonic and optofluidic devices and biophotonic applications. He is author of more than 60 scientific papers in premier peer-reviewed journals and received several invitations to major international conferences. He is inventor of two licensed patents in the field of photonics. He is in the technical program committees of the conferences CLEO Europe and Photonics West. He is currently the project coordinator of the 7th Framework Program EU project microFLUID (2008-2011).

Giulio Cerullo is Associate Professor of Physics at Politecnico di Milano. His current scientific interests concern generation of few-optical-cycle pulses, ultrafast spectroscopy with time resolution down to a few femtoseconds, and micro/nanostructuring by ultrashort pulses. He is the author of about 200 papers in international journals and has given over 40 invited presentations at international conferences. He is in the technical program committees of the conferences CLEO Europe, CLEO U.S.A., Photonics Europe and Ultrafast Phenomena. He is Topical Editor of the journal Optics Letters for the topic Ultrafast Optical Phenomena. He coordinates the European project HIBISCUS (Hybrid Integrated Bio-Sensors Created by Ultrafast Laser Sources).

Roberta Ramponi is Full Professor of Physics at the Politecnico di Milano, and chair of the bachelor and master-of-science degrees in Physics Engineering. She has a long-standing cooperation with the CNR Institute of Photonics and Nanotechnology as associate researcher. Her research activity includes integrated andnonlinear optics, the development of novel fabrication and characterization techniques for optical waveguides, and photonic devices for applications to telecommunications and to biomedical and environmental sensing. She is co-author of over 130 international publications. She was the President of the European Optical Society (EOS) in 2006-2008, now being the Past-President.