Atjaunināt sīkdatņu piekrišanu

Fermat's Last Theorem: Basic Tools [Mīkstie vāki]

  • Formāts: Paperback / softback, 200 pages, weight: 260 g
  • Sērija : Translations of Mathematical Monographs
  • Izdošanas datums: 30-Dec-2013
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821898485
  • ISBN-13: 9780821898482
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 61,22 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 200 pages, weight: 260 g
  • Sērija : Translations of Mathematical Monographs
  • Izdošanas datums: 30-Dec-2013
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821898485
  • ISBN-13: 9780821898482
Citas grāmatas par šo tēmu:
This book, together with the companion volume, Fermat's Last Theorem: The Proof, presents in full detail the proof of Fermat's Last Theorem given by Wiles and Taylor. With these two books, the reader will be able to see the whole picture of the proof to appreciate one of the deepest achievements in the history of mathematics. Crucial arguments, including the so-called $3$-$5$ trick, $R=T$ theorem, etc., are explained in depth. The proof relies on basic background materials in number theory and arithmetic geometry, such as elliptic curves, modular forms, Galois representations, deformation rings, modular curves over the integer rings, Galois cohomology, etc. The first four topics are crucial for the proof of Fermat's Last Theorem; they are also very important as tools in studying various other problems in modern algebraic number theory. The remaining topics will be treated in the second book to be published in the same series in 2014. In order to facilitate understanding the intricate proof, an outline of the whole argument is described in the first preliminary chapter, and more details are summarised in later chapters.

Recenzijas

The book ... is very clear and thorough, and may be recommended to anyone interested in understanding one of the deepest results of the twentieth century in mathematics." - Zentralblatt fur Mathematik

Preface ix
Preface to the English Edition xv
Chapter 0 Synopsis 1(12)
0.1 Simple paraphrase
1(2)
0.2 Elliptic curves
3(2)
0.3 Elliptic curves and modular forms
5(2)
0.4 Conductor of an elliptic curve and level of a modular form
7(2)
0.5 l-torsion points of elliptic curves and modular forms
9(4)
Chapter 1 Elliptic curves 13(22)
1.1 Elliptic curves over a field
13(2)
1.2 Reduction mod p
15(7)
1.3 Morphisms and the Tate modules
22(4)
1.4 Elliptic curves over an arbitrary scheme
26(3)
1.5 Generalized elliptic curves
29(6)
Chapter 2 Modular forms 35(46)
2.1 The j-invariant
35(2)
2.2 Moduli spaces
37(3)
2.3 Modular curves and modular forms
40(4)
2.4 Construction of modular curves
44(8)
2.5 The genus formula
52(3)
2.6 The Hecke operators
55(3)
2.7 The q-expansions
58(4)
2.8 Primary forms, primitive forms
62(3)
2.9 Elliptic curves and modular forms
65(1)
2.10 Primary forms, primitive forms, and Hecke algebras
66(4)
2.11 The analytic expression
70(4)
2.12 The q-expansion and analytic expression
74(3)
2.13 The q-expansion and Hecke operators
77(4)
Chapter 3 Galois representations 81(30)
3.1 Frobenius substitutions
82(4)
3.2 Galois representations and finite group schemes
86(3)
3.3 The Tate module of an elliptic curve
89(2)
3.4 Modular Q-adic representations
91(5)
3.5 Ramification conditions
96(4)
3.6 Finite flat group schemes
100(3)
3.7 Ramification of the Tate module of an elliptic curve
103(5)
3.8 Level of modular forms and ramification
108(3)
Chapter 4 The 3-5 trick 111(8)
4.1 Proof of Theorem 2.54
111(5)
4.2 Summary of the Proof of Theorem 0.1
116(3)
Chapter 5 R = T 119(24)
5.1 What is R = T?
119(3)
5.2 Deformation rings
122(4)
5.3 Hecke algebras
126(5)
5.4 Some commutative algebra
131(4)
5.5 Hecke modules
135(2)
5.6 Outline of the Proof of Theorem 5.22
137(6)
Chapter 6 Commutative algebra 143(16)
6.1 Proof of Theorem 5.25
143(6)
6.2 Proof of Theorem 5.27
149(10)
Chapter 7 Deformation rings 159(12)
7.1 Functors and their representations
159(2)
7.2 The existence theorem
161(1)
7.3 Proof of Theorem 5.8
162(4)
7.4 Proof of Theorem 7.7
166(5)
Appendix A Supplements to scheme theory 171(18)
A.1 Various properties of schemes
171(4)
A.2 Group schemes
175(2)
A.3 Quotient by a finite group
177(1)
A.4 Flat covering
178(1)
A.5 G-torsor
179(3)
A.6 Closed condition
182(1)
A.7 Cartier divisor
183(2)
A.8 Smooth commutative group scheme
185(4)
Bibliography 189(8)
Symbol Index 197(2)
Subject Index 199
Takeshi Saito, University of Tokyo, Japan