Atjaunināt sīkdatņu piekrišanu

Feynman-Kac-Type Formulae and Gibbs Measures 2nd rev. ed. [Hardback]

  • Formāts: Hardback, 575 pages, height x width: 240x170 mm, weight: 1100 g
  • Sērija : De Gruyter Studies in Mathematics
  • Izdošanas datums: 20-Jan-2020
  • Izdevniecība: De Gruyter
  • ISBN-10: 3110330040
  • ISBN-13: 9783110330045
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 149,65 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
    • De Gruyter E-books
  • Formāts: Hardback, 575 pages, height x width: 240x170 mm, weight: 1100 g
  • Sērija : De Gruyter Studies in Mathematics
  • Izdošanas datums: 20-Jan-2020
  • Izdevniecība: De Gruyter
  • ISBN-10: 3110330040
  • ISBN-13: 9783110330045
Citas grāmatas par šo tēmu:
This is the second updated and extended edition of the successful book on Feynman-Kac theory. It offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. The first volume concentrates on Feynman-Kac-type formulae and Gibbs measures.
Preface to the second edition ix
Preface to the first edition xi
1 Heuristics and history
1(8)
1.1 Feynman path integrals and Feynman--Kac formulae
1(4)
1.2 Plan and scope of the second edition
5(4)
2 Brownian motion
9(134)
2.1 Concepts and facts of general measure theory and probability
9(36)
2.1.1 Elements of general measure theory
9(7)
2.1.2 Probability measures and limit theorems
16(13)
2.1.3 Random variables
29(9)
2.1.4 Conditional expectation and regular conditional probability measures
38(7)
2.2 Random processes
45(32)
2.2.1 Basic concepts and facts
45(5)
2.2.2 Martingale properties
50(3)
2.2.3 Stopping times and optional sampling
53(14)
2.2.4 Markov properties
67(5)
2.2.5 Feller transition kernels and generators
72(2)
2.2.6 Invariant measures
74(3)
2.3 Brownian motion and Wiener measure
77(30)
2.3.1 Construction of Brownian motion
77(7)
2.3.2 Two-sided Brownian motion
84(4)
2.3.3 Conditional Wiener measure
88(1)
2.3.4 Martingale properties of Brownian motion
89(3)
2.3.5 Markov properties of Brownian motion
92(5)
2.3.6 Local path properties of Brownian motion
97(6)
2.3.7 Global path properties of Brownian motion
103(4)
2.4 Stochastic calculus based on Brownian motion
107(36)
2.4.1 The classical integral and its extensions
107(1)
2.4.2 Stochastic integrals
108(7)
2.4.3 Extension of stochastic integrals
115(4)
2.4.4 Ito formula
119(9)
2.4.5 Stochastic differential equations
128(6)
2.4.6 Brownian bridge
134(2)
2.4.7 Weak solution and time change
136(4)
2.4.8 Girsanov theorem and Cameron--Martin formula
140(3)
3 Levy processes
143(74)
3.1 Levy processes and the Levy--Khintchine formula
143(22)
3.1.1 Infinitely divisible random variables
143(6)
3.1.2 Levy--Khintchine formula
149(5)
3.1.3 Levy processes
154(6)
3.1.4 Martingale properties of Levy processes
160(1)
3.1.5 Markov properties of Levy processes
161(4)
3.2 Sample path properties of Levy processes
165(13)
3.2.1 Cidlag version
165(4)
3.2.2 Two-sided Levy processes
169(9)
3.3 Random measures and Levy--Ito decomposition
178(10)
3.3.1 Poisson random measures
178(8)
3.3.2 Levy-Ito decomposition
186(2)
3.4 Ito formula for semimartingales
188(13)
3.4.1 Point processes
188(6)
3.4.2 Ito formula for semimartingales
194(7)
3.5 Exponentials of Levy processes and recurrence properties
201(5)
3.5.1 Exponential functionals of Levy processes
201(2)
3.5.2 Capacitary measures
203(1)
3.5.3 Recurrence properties of Levy processes
204(2)
3.6 Subordinators and Bernstein functions
206(11)
3.6.1 Subordinators and subordinate Brownian motion
206(3)
3.6.2 Bernstein functions
209(8)
4 Feynman--Kac formulae
217(232)
4.1 Schodinger semigroups
217(29)
4.1.1 Schrodinger equation and path integral solutions
217(1)
4.1.2 Linear operators and their spectra
218(5)
4.1.3 Spectral resolution
223(4)
4.1.4 Compact operators and trace ideals
227(5)
4.1.5 Schrodinger operators
232(4)
4.1.6 Schrodinger operators through quadratic forms
236(3)
4.1.7 Confining potentials and decaying potentials
239(4)
4.1.8 Strongly continuous operator semigroups
243(3)
4.2 Feynman--Kac formula for Schrodinger operators
246(24)
4.2.1 Bounded smooth external potentials
246(3)
4.2.2 Derivation through the Trotter product formula
249(2)
4.2.3 Kato-class potentials
251(13)
4.2.4 Feynman-Kac formula for Kato-decomposable potentials
264(6)
4.3 Properties of Schrodinger operators and semigroups
270(50)
4.3.1 Kernel of the Schrodinger semigroup
270(1)
4.3.2 Positivity improving and uniqueness of ground state
271(4)
4.3.3 Degenerate ground state and Klauder phenomenon
275(2)
4.3.4 Existence and non-existence of ground states
277(5)
4.3.5 Sojourn times and existence of bound states
282(7)
4.3.6 The number of eigenfunctions with negative eigenvalues
289(18)
4.3.7 Application to canonical commutation relations
307(7)
4.3.8 Exponential decay of eigenfunctions
314(6)
4.4 Feynman--Kac formula for Schrodinger operators with vector potentials
320(15)
4.4.1 Feynman--Kac--Ito formula
320(4)
4.4.2 Alternative proof of the Feynman--Kac--Ito formula
324(3)
4.4.3 Extension to singular external and vector potentials
327(6)
4.4.4 Kato-class potentials and Lp-Lq boundedness
333(2)
4.5 Feynman--Kac formula for unbounded semigroups and Stark effect
335(4)
4.6 Feynman--Kac formula for relativistic Schrodinger operators
339(20)
4.6.1 Relativistic Schrodinger operator
339(5)
4.6.2 Relativistic Kato-class potentials
344(7)
4.6.3 Decay of eigenfunctions
351(5)
4.6.4 Non-relativistic limit
356(3)
4.7 Feynman--Kac formula for Schrodinger operators with spin
359(16)
4.7.1 Schrodinger operators with spin
359(2)
4.7.2 A jump process
361(2)
4.7.3 Feynman--Kac formula for the jump process
363(4)
4.7.4 Extension to singular external potentials and singular vector potentials
367(4)
4.7.5 Decay of eigenfunctions and martingale properties
371(4)
4.8 Feynman--Kac formula for relativistic Schrodinger operators with spin
375(13)
4.8.1 Relativistic Schrodinger operator with spin
375(6)
4.8.2 Martingale properties
381(3)
4.8.3 Decay of eigenfunctions
384(4)
4.9 Feynman--Kac formula for nonlocal Schrodinger operators
388(61)
4.9.1 Nonlocal Schrodinger operators
388(1)
4.9.2 Vector potentials
389(3)
4.9.3 V-Kato-class potentials
392(9)
4.9.4 Fractional Kato-class potentials
401(5)
4.9.5 Generalized spin
406(6)
4.9.6 Recurrence properties and existence of bound states
412(1)
4.9.7 The number of eigenfunctions with negative eigenvalues
413(10)
4.9.8 Decay of eigenfunctions
423(9)
4.9.9 Massless relativistic harmonic oscillator
432(4)
4.9.10 Embedded eigenvalues
436(13)
5 Gibbs measures associated with Feynman--Kac semigroups
449(72)
5.1 Ground state transform and related processes
449(32)
5.1.1 Ground state transform and the intrinsic semigroup
449(5)
5.1.2 Ground state-transformed processes as solutions of SDE
454(4)
5.1.3 P(φ)1-processes with continuous paths
458(6)
5.1.4 Dirichlet principle
464(3)
5.1.5 Mehler's formula
467(9)
5.1.6 P(φ)1-processes with cadlag paths
476(5)
5.2 Gibbs measures on path space
481(13)
5.2.1 From Feynman--Kac formulae to Gibbs measures
481(4)
5.2.2 Gibbs measures on Brownian paths
485(7)
5.2.3 Gibbs measures on cadlag paths
492(2)
5.3 Gibbs measures for external potentials
494(9)
5.3.1 Existence
494(3)
5.3.2 Uniqueness
497(6)
5.4 Gibbs measures for external and pair interaction potentials: direct method
503(8)
5.5 Gibbs measures for external and pair interaction potentials: cluster expansion
511(10)
5.5.1 Cluster representation
511(5)
5.5.2 Basic estimates and convergence of cluster expansion
516(2)
5.5.3 Further properties of the Gibbs measure
518(3)
6 Notes and references
521(18)
Notes to the Preface
521(1)
Notes to
Chapter 1
522(1)
Notes to
Chapter 2
522(3)
Notes to
Chapter 3
525(1)
Notes to
Chapter 4
526(9)
Notes to
Chapter 5
535(4)
Bibliography 539(14)
Index 553
József Lorinczi, Loughborough University, UK; Fumio Hiroshima, University of Kyushu, Fukuoka, Japan; Volker Betz, University of Warwick, Coventry, UK.