Preface |
|
xi | |
|
1 Path Integral Formalism Intuitive Approach |
|
|
1 | (12) |
|
1.1 Probability Amplitude |
|
|
1 | (12) |
|
1.1.1 Double Slit Experiment |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.1.3 Probability Amplitude |
|
|
2 | (1) |
|
1.1.4 Revisit Double Slit Experiment |
|
|
2 | (1) |
|
|
3 | (1) |
|
1.1.6 Superposition Principle |
|
|
3 | (1) |
|
1.1.7 Revisit the Double Slit Experiment/Superposition Principle |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.1.11 Geometrical Interpretation of State Vector |
|
|
8 | (1) |
|
1.1.12 Coordinate Transformation |
|
|
9 | (1) |
|
1.1.13 Projection Operator |
|
|
10 | (1) |
|
1.1.14 Continuous Spectrum |
|
|
11 | (2) |
|
2 Matrix Representation of Linear Operators |
|
|
13 | (16) |
|
|
13 | (1) |
|
2.2 Linear Self-Adjoint (Hermitian Conjugate) Operators |
|
|
13 | (2) |
|
2.3 Product of Hermitian Operators |
|
|
15 | (1) |
|
|
16 | (1) |
|
2.5 Schturm-Liouville Problem: Eigenstates and Eigenvalues |
|
|
17 | (3) |
|
2.6 Revisit Linear Self-Adjoint (Hermitian) Operators |
|
|
20 | (1) |
|
2.7 Unitary Transformation |
|
|
21 | (1) |
|
2.8 Mean (Expectation) Value and Matrix Density |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
2.11 Commutativity of Operators |
|
|
25 | (4) |
|
3 Operators in Phase Space |
|
|
29 | (6) |
|
|
29 | (1) |
|
|
30 | (1) |
|
3.3 Position and Wave Function |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
33 | (2) |
|
|
35 | (18) |
|
4.1 Path Integration in Phase Space |
|
|
36 | (5) |
|
4.1.1 From the Schrodinger Equation to Path Integration |
|
|
36 | (3) |
|
4.1.2 Trotter Product Formula |
|
|
39 | (2) |
|
|
41 | (12) |
|
4.2.1 Hamiltonian Formulation of Path Integration |
|
|
41 | (2) |
|
4.2.2 Path Integral Subtleties |
|
|
43 | (1) |
|
|
43 | (1) |
|
4.2.3 Lagrangian Formulation of Path Integration |
|
|
44 | (1) |
|
4.2.3.1 Complex Gaussian Integral |
|
|
44 | (2) |
|
4.2.4 Transition Amplitude |
|
|
46 | (5) |
|
4.2.5 Law for Consecutive Events |
|
|
51 | (1) |
|
4.2.6 Semigroup Property of the Transition Amplitude |
|
|
51 | (2) |
|
5 Stationary and Quasi-Classical Approximations |
|
|
53 | (24) |
|
5.1 Stationary Phase Method / Fourier Integral |
|
|
53 | (3) |
|
5.2 Contribution from Non-Degenerate Stationary Points |
|
|
56 | (4) |
|
5.2.1 Unique Stationary Point |
|
|
58 | (2) |
|
5.3 Quasi-Classical Approximation/Fluctuating Path |
|
|
60 | (7) |
|
5.3.1 Free Particle Classical Action and Transition Amplitude |
|
|
60 | (1) |
|
5.3.1.1 Free Particle Classical Action |
|
|
61 | (1) |
|
5.3.1.2 Free Particle Transition Amplitude |
|
|
62 | (3) |
|
5.3.1.3 From Path Integrals to Quantum Mechanics |
|
|
65 | (2) |
|
5.4 Free and Driven Harmonic Oscillator Classical Action and Transition Amplitude |
|
|
67 | (4) |
|
5.4.1 Free Oscillator Classical Action |
|
|
67 | (2) |
|
5.4.2 Driven or Forced Harmonic Oscillator Classical Action |
|
|
69 | (2) |
|
5.5 Free and Driven Harmonic Oscillator Transition Amplitude |
|
|
71 | (1) |
|
5.6 Fluctuation Contribution to Transition Amplitude |
|
|
72 | (5) |
|
|
74 | (3) |
|
6 Generalized Feynman Path Integration |
|
|
77 | (14) |
|
6.1 Coordinate Representation |
|
|
77 | (2) |
|
6.2 Free Particle Transition Amplitude |
|
|
79 | (2) |
|
6.3 Gaussian Functional Feynman Path Integrals |
|
|
81 | (6) |
|
6.4 Charged Particle in a Magnetic Field |
|
|
87 | (4) |
|
7 From Path Integration to the Schrodinger Equation |
|
|
91 | (10) |
|
|
91 | (1) |
|
|
92 | (2) |
|
7.3 The Schrodinger Equation's Green's Function |
|
|
94 | (1) |
|
7.4 Transition Amplitude for a Time-Independent Hamiltonian |
|
|
95 | (2) |
|
7.5 Retarded Green Function |
|
|
97 | (4) |
|
8 Quasi-Classical Approximation |
|
|
101 | (34) |
|
8.1 Wentzel-Kramer-Brillouin (WKB) Method |
|
|
101 | (11) |
|
8.1.1 Condition of Applicability of the Quasi-Classical Approximation |
|
|
104 | (2) |
|
8.1.2 Bounded Quasi-Classical Motion |
|
|
106 | (3) |
|
8.1.3 Quasi-Classical Quantization |
|
|
109 | (2) |
|
|
111 | (1) |
|
|
112 | (2) |
|
|
114 | (2) |
|
8.4 Quasi-Classical Derivation of the Propagator |
|
|
116 | (1) |
|
8.5 Reflection and Tunneling via a Barrier |
|
|
117 | (2) |
|
8.6 Transparency of the Quasi-Classical Barrier |
|
|
119 | (2) |
|
|
121 | (14) |
|
8.7.1 Motion in a Central Symmetric Field |
|
|
125 | (1) |
|
|
125 | (4) |
|
8.7.1.2 Radial Equation for a Spherically Symmetric Potential in Three Dimensions |
|
|
129 | (1) |
|
8.7.2 Motion in a Coulombic Field |
|
|
130 | (1) |
|
|
130 | (5) |
|
9 Free Particle and Harmonic Oscillator |
|
|
135 | (10) |
|
9.1 Eigenfunction and Eigenvalue |
|
|
135 | (3) |
|
|
135 | (2) |
|
9.1.2 Transition Amplitude for a Particle in a Homogenous Field |
|
|
137 | (1) |
|
|
138 | (5) |
|
9.3 Transition Amplitude Hermiticity |
|
|
143 | (2) |
|
10 Matrix Element of a Physical Operator via Functional Integral |
|
|
145 | (8) |
|
10.1 Matrix Representation of the Transition Amplitude of a Forced Harmonic Oscillator |
|
|
147 | (6) |
|
10.1.1 Charged Particle Interaction with Phonons |
|
|
150 | (3) |
|
11 Path Integral Perturbation Theory |
|
|
153 | (20) |
|
11.1 Time-Dependent Perturbation |
|
|
160 | (3) |
|
11.2 Transition Probability |
|
|
163 | (1) |
|
11.3 Time-Energy Uncertainty Relation |
|
|
164 | (2) |
|
11.4 Density of Final State |
|
|
166 | (2) |
|
|
166 | (2) |
|
11.5 Continuous Spectrum due to a Constant Perturbation |
|
|
168 | (1) |
|
11.6 Harmonic Perturbation |
|
|
169 | (4) |
|
12 Transition Matrix Element |
|
|
173 | (6) |
|
|
179 | (12) |
|
13.1 Functional Derivative of the Action Functional |
|
|
181 | (2) |
|
13.2 Functional Derivative and Matrix Element |
|
|
183 | (8) |
|
14 Quantum Statistical Mechanics Functional Integral Approach |
|
|
191 | (8) |
|
|
191 | (1) |
|
|
191 | (1) |
|
14.2.1 Partition Function |
|
|
191 | (1) |
|
14.3 Expectation Value of a Physical Observable |
|
|
192 | (1) |
|
|
192 | (2) |
|
14.5 Density Matrix in the Energy Representation |
|
|
194 | (5) |
|
15 Partition Function and Density Matrix Path Integral Representation |
|
|
199 | (20) |
|
15.1 Density Matrix Path Integral Representation |
|
|
199 | (6) |
|
15.1.1 Density Matrix Operator Average Value in Phase Space |
|
|
199 | (2) |
|
15.1.1.1 Generalized Gaussian Functional Path Integral in Phase Space |
|
|
201 | (1) |
|
15.1.2 Density Matrix via Transition Amplitude |
|
|
202 | (3) |
|
15.2 Partition Function in the Path Integral Representation |
|
|
205 | (4) |
|
15.3 Particle Interaction with a Driven or Forced Harmonic Oscillator: Partition Function |
|
|
209 | |
|
15.4 Free Particle Density Matrix and Partition Function |
|
|
221 | |
|
15.5 Quantum Harmonic Oscillator Density Matrix and Partition Function |
|
|
214 | (5) |
|
16 Quasi-Classical Approximation in Quantum Statistical Mechanics |
|
|
219 | (1) |
|
16.1 Centroid Effective Potential |
|
|
220 | (5) |
|
|
225 | (4) |
|
17 Feynman Variational Method |
|
|
229 | (8) |
|
|
237 | (100) |
|
|
237 | (2) |
|
18.2 Polaron Energy and Effective Mass |
|
|
239 | (2) |
|
18.3 Functional Influence Phase |
|
|
241 | (5) |
|
18.3.1 Polaron Model Lagrangian |
|
|
243 | (1) |
|
18.3.2 Polaron Partition Function |
|
|
243 | (3) |
|
18.4 Influence Phase via Feynman Functional Integral in the Density Matrix Representation |
|
|
246 | (9) |
|
18.4.1 Expectation Value of a Physical Quantity |
|
|
246 | (1) |
|
|
246 | (9) |
|
18.5 Full System Polaron Partition Function in a 3D Structure |
|
|
255 | (1) |
|
18.6 Model System Polaron Partition Function in a 3D Structure |
|
|
256 | (1) |
|
18.7 Feynman Inequality and Generating Functional |
|
|
257 | (2) |
|
18.8 Polaron Characteristics in a 3D Structure |
|
|
259 | (6) |
|
18.8.1 Polaron Asymptotic Characteristics |
|
|
264 | (1) |
|
18.9 Polaron Characteristics in a Quasi-1D Quantum Wire |
|
|
265 | (4) |
|
18.9.1 Hamiltonian of the Electron in a Quasi 1D Quantum Wire |
|
|
265 | (1) |
|
18.9.1.1 Lagrangian of the Electron in a Quasi-1D Quantum Wire |
|
|
266 | (1) |
|
18.9.1.2 Partition Function of the Electron in a Quasi-1D Quantum Wire |
|
|
267 | (2) |
|
18.10 Polaron Generating Function |
|
|
269 | (1) |
|
18.11 Polaron Asymptotic Characteristics |
|
|
270 | (3) |
|
18.12 Strong Coupling Regime Polaron Characteristics |
|
|
273 | (3) |
|
18.13 Bipolaron Characteristics in a Quasi-ID Quantum Wire |
|
|
276 | (13) |
|
|
276 | (2) |
|
18.13.2 Bipolaron Diagrammatic Representation |
|
|
278 | (1) |
|
18.13.3 Bipolaron Lagrangian |
|
|
278 | (2) |
|
18.13.4 Bipolaron Equation of Motion |
|
|
280 | (2) |
|
18.13.5 Transformation into Normal Coordinates |
|
|
282 | (1) |
|
18.13.5.1 Diagonalization of the Lagrangian |
|
|
282 | (1) |
|
18.13.6 Bipolaron Partition Function |
|
|
283 | (2) |
|
18.13.7 Bipolaron Generating Function |
|
|
285 | (1) |
|
18.13.8 Bipolaron Asymptotic Characteristics |
|
|
286 | (3) |
|
18.14 Polaron Characteristics in a Quasi-OD Spherical Quantum Dot |
|
|
289 | (6) |
|
|
289 | (1) |
|
18.14.2 Polaron Lagrangian |
|
|
290 | (1) |
|
|
290 | (1) |
|
18.14.4 Lagrangian Diagonalization |
|
|
291 | (1) |
|
18.14.4.1 Transformation to Normal Coordinates |
|
|
291 | (1) |
|
18.14.5 Polaron Partition Function |
|
|
292 | (1) |
|
18.14.6 Generating Function |
|
|
293 | (2) |
|
18.15 Bipolaron Characteristics in a Quasi-OD Spherical Quantum Dot |
|
|
295 | (5) |
|
|
295 | (1) |
|
|
296 | (1) |
|
|
296 | (1) |
|
18.15.3.1 Equation of Motion and Normal Modes |
|
|
296 | (1) |
|
18.15.4 Diagonalization of the Lagrangian |
|
|
297 | (2) |
|
18.15.5 Partition Function |
|
|
299 | (1) |
|
18.15.6 Full System Influence Phase |
|
|
300 | (1) |
|
|
300 | (4) |
|
18.16.1 Generating Function |
|
|
300 | (1) |
|
18.16.2 Bipolaron Characteristics |
|
|
301 | (3) |
|
18.17 Polaron Characteristics in a Cylindrical Quantum Dot |
|
|
304 | (6) |
|
18.17.1 System Hamiltonian |
|
|
304 | (1) |
|
18.17.2 Transformation to Normal Coordinates |
|
|
305 | (1) |
|
18.17.2.1 Lagrangian Diagonalization |
|
|
305 | (1) |
|
18.17.3 Polaron Energy/Partition Function |
|
|
306 | (1) |
|
18.17.4 Polaron Generating Function |
|
|
307 | (1) |
|
|
308 | (2) |
|
18.18 Bipolaron Characteristics in a Cylindrical Quantum Dot |
|
|
310 | (5) |
|
18.18.1 System Hamiltonian |
|
|
310 | (1) |
|
18.18.1.1 Model System Action Functional |
|
|
310 | (1) |
|
18.18.1.2 Equation of Motion / Normal Modes |
|
|
311 | (1) |
|
18.18.1.3 Lagrangian Diagonalization |
|
|
312 | (1) |
|
18.18.1.4 Bipolaron Partition Function |
|
|
312 | (1) |
|
18.18.1.5 Bipolaron Generating Function |
|
|
313 | (1) |
|
18.18.1.6 Bipolaron Energy |
|
|
313 | (2) |
|
18.19 Polaron Characteristics in a Quasi-OD Cylindrical Quantum Dot with Asymmetrical Parabolic Potential |
|
|
315 | (1) |
|
|
316 | (4) |
|
18.21 Bipolaron Characteristics in a Quasi-OD Cylindrical Quantum Dot with Asymmetrical Parabolic Potential |
|
|
320 | (4) |
|
18.22 Polaron in a Magnetic Field |
|
|
324 | (13) |
|
19 Multiphoton Absorption by Polarons in a Spherical Quantum Dot |
|
|
337 | (14) |
|
19.1 Theory of Multiphoton Absorption by Polarons |
|
|
337 | (1) |
|
19.2 Basic Approximations |
|
|
338 | (1) |
|
19.3 Absorption Coefficient |
|
|
339 | (12) |
|
20 Polaronic Kinetics in a Spherical Quantum Dot |
|
|
351 | (14) |
|
21 Kinetic Theory of Gases |
|
|
365 | (26) |
|
21.1 Distribution Function |
|
|
365 | (1) |
|
21.2 Principle of Detailed Equilibrium |
|
|
365 | (4) |
|
21.3 Transport Phenomenon and Boltzmann-Lorentz Kinetic Equation |
|
|
369 | (4) |
|
21.4 Transport Relaxation Time |
|
|
373 | (2) |
|
|
375 | (3) |
|
21.6 Thermal Conductivity |
|
|
378 | (2) |
|
|
380 | (6) |
|
21.8 Electron-Phonon System Equation of Motion |
|
|
386 | (5) |
References |
|
391 | (4) |
Index |
|
395 | |