Atjaunināt sīkdatņu piekrišanu

E-grāmata: Feynman Path Integrals in Quantum Mechanics and Statistical Physics [Taylor & Francis e-book]

(University of Dschang, Cameroon)
  • Formāts: 400 pages, 58 Line drawings, black and white
  • Izdošanas datums: 20-Apr-2021
  • Izdevniecība: CRC Press
  • ISBN-13: 9781003145554
  • Taylor & Francis e-book
  • Cena: 266,81 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Standarta cena: 381,15 €
  • Ietaupiet 30%
  • Formāts: 400 pages, 58 Line drawings, black and white
  • Izdošanas datums: 20-Apr-2021
  • Izdevniecība: CRC Press
  • ISBN-13: 9781003145554
"This book provides an ideal introduction to the use of Feynman Path Integrals in the fields of quantum mechanics and statistical physics. It is written for graduate students and researchers in physics, mathematical physics, applied mathematics as well as chemistry. The material is presented in an accessible manner for readers with little knowledge of quantum mechanics and no prior exposure to path integrals. It begins with elementary concepts and a review of quantum mechanics that gradually builds the framework for the Feynman path integrals and how they are applied to problems in quantum mechanics and statistical physics. Problem sets throughout the book allow readers to test their understanding and reinforce the explanations of the theory in real situations"--

This book provides an ideal introduction to the use of Feynman path integrals in the fields of quantum mechanics and statistical physics. It is written for graduate students and researchers in physics, mathematical physics, applied mathematics as well as chemistry. The material is presented in an accessible manner for readers with little knowledge of quantum mechanics and no prior exposure to path integrals. It begins with elementary concepts and a review of quantum mechanics that gradually builds the framework for the Feynman path integrals and how they are applied to problems in quantum mechanics and statistical physics. Problem sets throughout the book allow readers to test their understanding and reinforce the explanations of the theory in real situations.

Features:

  • Comprehensive and rigorous yet, presents an easy-to-understand approach.
  • Applicable to a wide range of disciplines.
    • Accessible to those with little, or basic, mathematical understanding.
  • Preface xi
    1 Path Integral Formalism Intuitive Approach
    1(12)
    1.1 Probability Amplitude
    1(12)
    1.1.1 Double Slit Experiment
    1(1)
    1.1.2 Physical State
    2(1)
    1.1.3 Probability Amplitude
    2(1)
    1.1.4 Revisit Double Slit Experiment
    2(1)
    1.1.5 Distinguishability
    3(1)
    1.1.6 Superposition Principle
    3(1)
    1.1.7 Revisit the Double Slit Experiment/Superposition Principle
    4(1)
    1.1.8 Orthogonality
    5(1)
    1.1.9 Orthonormality
    6(1)
    1.1.10 Change of Basis
    7(1)
    1.1.11 Geometrical Interpretation of State Vector
    8(1)
    1.1.12 Coordinate Transformation
    9(1)
    1.1.13 Projection Operator
    10(1)
    1.1.14 Continuous Spectrum
    11(2)
    2 Matrix Representation of Linear Operators
    13(16)
    2.1 Matrix Element
    13(1)
    2.2 Linear Self-Adjoint (Hermitian Conjugate) Operators
    13(2)
    2.3 Product of Hermitian Operators
    15(1)
    2.4 Continuous Spectrum
    16(1)
    2.5 Schturm-Liouville Problem: Eigenstates and Eigenvalues
    17(3)
    2.6 Revisit Linear Self-Adjoint (Hermitian) Operators
    20(1)
    2.7 Unitary Transformation
    21(1)
    2.8 Mean (Expectation) Value and Matrix Density
    22(1)
    2.9 Degeneracy
    23(1)
    2.10 Density Operator
    24(1)
    2.11 Commutativity of Operators
    25(4)
    3 Operators in Phase Space
    29(6)
    3.1 Introduction
    29(1)
    3.2 Configuration Space
    30(1)
    3.3 Position and Wave Function
    31(1)
    3.4 Momentum Space
    32(1)
    3.5 Classical Action
    33(2)
    4 Transition Amplitude
    35(18)
    4.1 Path Integration in Phase Space
    36(5)
    4.1.1 From the Schrodinger Equation to Path Integration
    36(3)
    4.1.2 Trotter Product Formula
    39(2)
    4.2 Transition Amplitude
    41(12)
    4.2.1 Hamiltonian Formulation of Path Integration
    41(2)
    4.2.2 Path Integral Subtleties
    43(1)
    4.2.2.1 Mid-point Rule
    43(1)
    4.2.3 Lagrangian Formulation of Path Integration
    44(1)
    4.2.3.1 Complex Gaussian Integral
    44(2)
    4.2.4 Transition Amplitude
    46(5)
    4.2.5 Law for Consecutive Events
    51(1)
    4.2.6 Semigroup Property of the Transition Amplitude
    51(2)
    5 Stationary and Quasi-Classical Approximations
    53(24)
    5.1 Stationary Phase Method / Fourier Integral
    53(3)
    5.2 Contribution from Non-Degenerate Stationary Points
    56(4)
    5.2.1 Unique Stationary Point
    58(2)
    5.3 Quasi-Classical Approximation/Fluctuating Path
    60(7)
    5.3.1 Free Particle Classical Action and Transition Amplitude
    60(1)
    5.3.1.1 Free Particle Classical Action
    61(1)
    5.3.1.2 Free Particle Transition Amplitude
    62(3)
    5.3.1.3 From Path Integrals to Quantum Mechanics
    65(2)
    5.4 Free and Driven Harmonic Oscillator Classical Action and Transition Amplitude
    67(4)
    5.4.1 Free Oscillator Classical Action
    67(2)
    5.4.2 Driven or Forced Harmonic Oscillator Classical Action
    69(2)
    5.5 Free and Driven Harmonic Oscillator Transition Amplitude
    71(1)
    5.6 Fluctuation Contribution to Transition Amplitude
    72(5)
    5.6.1 Maslov Correction
    74(3)
    6 Generalized Feynman Path Integration
    77(14)
    6.1 Coordinate Representation
    77(2)
    6.2 Free Particle Transition Amplitude
    79(2)
    6.3 Gaussian Functional Feynman Path Integrals
    81(6)
    6.4 Charged Particle in a Magnetic Field
    87(4)
    7 From Path Integration to the Schrodinger Equation
    91(10)
    7.1 Wave Function
    91(1)
    7.2 Schrodinger Equation
    92(2)
    7.3 The Schrodinger Equation's Green's Function
    94(1)
    7.4 Transition Amplitude for a Time-Independent Hamiltonian
    95(2)
    7.5 Retarded Green Function
    97(4)
    8 Quasi-Classical Approximation
    101(34)
    8.1 Wentzel-Kramer-Brillouin (WKB) Method
    101(11)
    8.1.1 Condition of Applicability of the Quasi-Classical Approximation
    104(2)
    8.1.2 Bounded Quasi-Classical Motion
    106(3)
    8.1.3 Quasi-Classical Quantization
    109(2)
    8.1.4 Path Integral Link
    111(1)
    8.2 Potential Well
    112(2)
    8.3 Potential Barrier
    114(2)
    8.4 Quasi-Classical Derivation of the Propagator
    116(1)
    8.5 Reflection and Tunneling via a Barrier
    117(2)
    8.6 Transparency of the Quasi-Classical Barrier
    119(2)
    8.7 Homogenous Field
    121(14)
    8.7.1 Motion in a Central Symmetric Field
    125(1)
    8.7.1.1 Polar Equation
    125(4)
    8.7.1.2 Radial Equation for a Spherically Symmetric Potential in Three Dimensions
    129(1)
    8.7.2 Motion in a Coulombic Field
    130(1)
    8.7.2.1 Hydrogen Atom
    130(5)
    9 Free Particle and Harmonic Oscillator
    135(10)
    9.1 Eigenfunction and Eigenvalue
    135(3)
    9.1.1 Free Particle
    135(2)
    9.1.2 Transition Amplitude for a Particle in a Homogenous Field
    137(1)
    9.2 Harmonic Oscillator
    138(5)
    9.3 Transition Amplitude Hermiticity
    143(2)
    10 Matrix Element of a Physical Operator via Functional Integral
    145(8)
    10.1 Matrix Representation of the Transition Amplitude of a Forced Harmonic Oscillator
    147(6)
    10.1.1 Charged Particle Interaction with Phonons
    150(3)
    11 Path Integral Perturbation Theory
    153(20)
    11.1 Time-Dependent Perturbation
    160(3)
    11.2 Transition Probability
    163(1)
    11.3 Time-Energy Uncertainty Relation
    164(2)
    11.4 Density of Final State
    166(2)
    11.4.1 Transition Rate
    166(2)
    11.5 Continuous Spectrum due to a Constant Perturbation
    168(1)
    11.6 Harmonic Perturbation
    169(4)
    12 Transition Matrix Element
    173(6)
    13 Functional Derivative
    179(12)
    13.1 Functional Derivative of the Action Functional
    181(2)
    13.2 Functional Derivative and Matrix Element
    183(8)
    14 Quantum Statistical Mechanics Functional Integral Approach
    191(8)
    14.1 Introduction
    191(1)
    14.2 Density Matrix
    191(1)
    14.2.1 Partition Function
    191(1)
    14.3 Expectation Value of a Physical Observable
    192(1)
    14.4 Density Matrix
    192(2)
    14.5 Density Matrix in the Energy Representation
    194(5)
    15 Partition Function and Density Matrix Path Integral Representation
    199(20)
    15.1 Density Matrix Path Integral Representation
    199(6)
    15.1.1 Density Matrix Operator Average Value in Phase Space
    199(2)
    15.1.1.1 Generalized Gaussian Functional Path Integral in Phase Space
    201(1)
    15.1.2 Density Matrix via Transition Amplitude
    202(3)
    15.2 Partition Function in the Path Integral Representation
    205(4)
    15.3 Particle Interaction with a Driven or Forced Harmonic Oscillator: Partition Function
    209
    15.4 Free Particle Density Matrix and Partition Function
    221
    15.5 Quantum Harmonic Oscillator Density Matrix and Partition Function
    214(5)
    16 Quasi-Classical Approximation in Quantum Statistical Mechanics
    219(1)
    16.1 Centroid Effective Potential
    220(5)
    16.2 Expectation Value
    225(4)
    17 Feynman Variational Method
    229(8)
    18 Polaron Theory
    237(100)
    18.1 Introduction
    237(2)
    18.2 Polaron Energy and Effective Mass
    239(2)
    18.3 Functional Influence Phase
    241(5)
    18.3.1 Polaron Model Lagrangian
    243(1)
    18.3.2 Polaron Partition Function
    243(3)
    18.4 Influence Phase via Feynman Functional Integral in the Density Matrix Representation
    246(9)
    18.4.1 Expectation Value of a Physical Quantity
    246(1)
    18.4.1.1 Density Matrix
    246(9)
    18.5 Full System Polaron Partition Function in a 3D Structure
    255(1)
    18.6 Model System Polaron Partition Function in a 3D Structure
    256(1)
    18.7 Feynman Inequality and Generating Functional
    257(2)
    18.8 Polaron Characteristics in a 3D Structure
    259(6)
    18.8.1 Polaron Asymptotic Characteristics
    264(1)
    18.9 Polaron Characteristics in a Quasi-1D Quantum Wire
    265(4)
    18.9.1 Hamiltonian of the Electron in a Quasi 1D Quantum Wire
    265(1)
    18.9.1.1 Lagrangian of the Electron in a Quasi-1D Quantum Wire
    266(1)
    18.9.1.2 Partition Function of the Electron in a Quasi-1D Quantum Wire
    267(2)
    18.10 Polaron Generating Function
    269(1)
    18.11 Polaron Asymptotic Characteristics
    270(3)
    18.12 Strong Coupling Regime Polaron Characteristics
    273(3)
    18.13 Bipolaron Characteristics in a Quasi-ID Quantum Wire
    276(13)
    18.13.1 Introduction
    276(2)
    18.13.2 Bipolaron Diagrammatic Representation
    278(1)
    18.13.3 Bipolaron Lagrangian
    278(2)
    18.13.4 Bipolaron Equation of Motion
    280(2)
    18.13.5 Transformation into Normal Coordinates
    282(1)
    18.13.5.1 Diagonalization of the Lagrangian
    282(1)
    18.13.6 Bipolaron Partition Function
    283(2)
    18.13.7 Bipolaron Generating Function
    285(1)
    18.13.8 Bipolaron Asymptotic Characteristics
    286(3)
    18.14 Polaron Characteristics in a Quasi-OD Spherical Quantum Dot
    289(6)
    18.14.1 Introduction
    289(1)
    18.14.2 Polaron Lagrangian
    290(1)
    18.14.3 Normal Modes
    290(1)
    18.14.4 Lagrangian Diagonalization
    291(1)
    18.14.4.1 Transformation to Normal Coordinates
    291(1)
    18.14.5 Polaron Partition Function
    292(1)
    18.14.6 Generating Function
    293(2)
    18.15 Bipolaron Characteristics in a Quasi-OD Spherical Quantum Dot
    295(5)
    18.15.1 Introduction
    295(1)
    18.15.2 Model Lagrangian
    296(1)
    18.15.3 Model Lagrangian
    296(1)
    18.15.3.1 Equation of Motion and Normal Modes
    296(1)
    18.15.4 Diagonalization of the Lagrangian
    297(2)
    18.15.5 Partition Function
    299(1)
    18.15.6 Full System Influence Phase
    300(1)
    18.16 Bipolaron Energy
    300(4)
    18.16.1 Generating Function
    300(1)
    18.16.2 Bipolaron Characteristics
    301(3)
    18.17 Polaron Characteristics in a Cylindrical Quantum Dot
    304(6)
    18.17.1 System Hamiltonian
    304(1)
    18.17.2 Transformation to Normal Coordinates
    305(1)
    18.17.2.1 Lagrangian Diagonalization
    305(1)
    18.17.3 Polaron Energy/Partition Function
    306(1)
    18.17.4 Polaron Generating Function
    307(1)
    18.17.5 Polaron Energy
    308(2)
    18.18 Bipolaron Characteristics in a Cylindrical Quantum Dot
    310(5)
    18.18.1 System Hamiltonian
    310(1)
    18.18.1.1 Model System Action Functional
    310(1)
    18.18.1.2 Equation of Motion / Normal Modes
    311(1)
    18.18.1.3 Lagrangian Diagonalization
    312(1)
    18.18.1.4 Bipolaron Partition Function
    312(1)
    18.18.1.5 Bipolaron Generating Function
    313(1)
    18.18.1.6 Bipolaron Energy
    313(2)
    18.19 Polaron Characteristics in a Quasi-OD Cylindrical Quantum Dot with Asymmetrical Parabolic Potential
    315(1)
    18.20 Polaron Energy
    316(4)
    18.21 Bipolaron Characteristics in a Quasi-OD Cylindrical Quantum Dot with Asymmetrical Parabolic Potential
    320(4)
    18.22 Polaron in a Magnetic Field
    324(13)
    19 Multiphoton Absorption by Polarons in a Spherical Quantum Dot
    337(14)
    19.1 Theory of Multiphoton Absorption by Polarons
    337(1)
    19.2 Basic Approximations
    338(1)
    19.3 Absorption Coefficient
    339(12)
    20 Polaronic Kinetics in a Spherical Quantum Dot
    351(14)
    21 Kinetic Theory of Gases
    365(26)
    21.1 Distribution Function
    365(1)
    21.2 Principle of Detailed Equilibrium
    365(4)
    21.3 Transport Phenomenon and Boltzmann-Lorentz Kinetic Equation
    369(4)
    21.4 Transport Relaxation Time
    373(2)
    21.5 Boltzmann H-Theorem
    375(3)
    21.6 Thermal Conductivity
    378(2)
    21.7 Diffusion
    380(6)
    21.8 Electron-Phonon System Equation of Motion
    386(5)
    References 391(4)
    Index 395
    Lukong Cornelius Fai is professor of theoretical physics at the Department of Physics, Faculty of Sciences, University of Dschang. He is Head of Condensed Matter and Nanomaterials as well as Mesoscopic and Multilayer Structures Laboratory. He was formerly a senior associate at the Abdus Salam International Centre for Theoretical Physics (ICTP), Italy. He holds a Masters of Science in Physics and Mathematics (June 1991) as well as a Doctor of Science in Physics and Mathematics (February 1997) from Moldova State University. He is an author of over a hundred scientific publications and three textbooks