Atjaunināt sīkdatņu piekrišanu

Fiber Optic Communications 2021 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 639 pages, height x width: 235x155 mm, weight: 1009 g, 63 Illustrations, color; 252 Illustrations, black and white; XXIII, 639 p. 315 illus., 63 illus. in color., 1 Paperback / softback
  • Izdošanas datums: 04-Mar-2022
  • Izdevniecība: Springer Verlag, Singapore
  • ISBN-10: 9813346671
  • ISBN-13: 9789813346673
  • Mīkstie vāki
  • Cena: 55,83 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 65,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 639 pages, height x width: 235x155 mm, weight: 1009 g, 63 Illustrations, color; 252 Illustrations, black and white; XXIII, 639 p. 315 illus., 63 illus. in color., 1 Paperback / softback
  • Izdošanas datums: 04-Mar-2022
  • Izdevniecība: Springer Verlag, Singapore
  • ISBN-10: 9813346671
  • ISBN-13: 9789813346673

This book highlights the fundamental principles of optical fiber technology required for understanding modern high-capacity lightwave telecom networks. Such networks have become an indispensable part of society with applications ranging from simple web browsing to critical healthcare diagnosis and cloud computing. Since users expect these services to always be available, careful engineering is required in all technologies ranging from component development to network operations. To achieve this understanding, this book first presents a comprehensive treatment of various optical fiber structures and diverse photonic components used in optical fiber networks. Following this discussion are the fundamental design principles of digital and analog optical fiber transmission links. The concluding chapters present the architectures and performance characteristics of optical networks.

1 Perspectives on Lightwave Communications
1(30)
1.1 Reasons for Fiber Optic Communications
3(2)
1.1.1 The Road to Optical Networks
3(1)
1.1.2 Benefits of Using Optical Fibers
4(1)
1.2 Optical Wavelength Bands
5(5)
1.2.1 Electromagnetic Energy Spectrum
5(3)
1.2.2 Optical Windows and Spectral Bands
8(2)
1.3 Decibel Notation
10(4)
1.4 Digital Multiplexing Techniques
14(3)
1.4.1 Basic Telecom Signal Multiplexing
14(2)
1.4.2 Multiplexing Hierarchy in SONET/SDH
16(1)
1.4.3 Optical Transport Network (OTN)
17(1)
1.5 Multiplexing of Wavelength Channels
17(2)
1.5.1 Basis of WDM
18(1)
1.5.2 Polarization Division Multiplexing
19(1)
1.5.3 Optical Fibers with Multiple Cores
19(1)
1.6 Basic Elements of Optical Fiber Systems
19(4)
1.7 Evolution of Fiber Optic Networks
23(2)
1.8 Standards for Fiber Optic Communications
25(1)
1.9 Summary
25(4)
References
29(2)
2 Optical Fiber Structures and Light Guiding Principles
31(62)
2.1 The Nature of Light
32(8)
2.1.1 Polarization
33(1)
2.1.2 Linear Polarization
34(2)
2.1.3 Elliptical Polarization and Circular Polarization
36(3)
2.1.4 Quantum Aspects of Light
39(1)
2.2 Basic Laws and Definitions of Optics
40(8)
2.2.1 Concept of Refractive Index
40(1)
2.2.2 Basis of Reflection and Refraction
40(4)
2.2.3 Polarization Characteristics of Light
44(2)
2.2.4 Polarization-Sensitive Devices
46(2)
2.3 Optical Fiber Configurations and Modes
48(10)
2.3.1 Conventional Fiber Types
48(3)
2.3.2 Concepts of Rays and Modes
51(1)
2.3.3 Structure of Step-Index Fibers
52(1)
2.3.4 Ray Optics Representation
52(3)
2.3.5 Lightwaves in a Dielectric Slab Waveguide
55(3)
2.4 Modes in Circular Waveguides
58(7)
2.4.1 Basic Modal Concepts
58(2)
2.4.2 Cutoff Wavelength and V Number
60(2)
2.4.3 Optical Power in Step-Index Fibers
62(1)
2.4.4 Linearly Polarized Modes
63(2)
2.5 Single-Mode Fibers
65(5)
2.5.1 SMF Construction
65(1)
2.5.2 Definition of Mode-Field Diameter
66(2)
2.5.3 Origin of Birefringence
68(2)
2.5.4 Effective Refractive Index
70(1)
2.6 Graded-Index (GI) Fibers
70(3)
2.6.1 Core Structure of GI Fibers
70(1)
2.6.2 GI Fiber Numerical Aperture
71(1)
2.6.3 Cutoff Condition in GI Fibers
72(1)
2.7 Optical Fiber Materials
73(3)
2.7.1 Glass Optical Fibers
73(2)
2.7.2 Standard Fiber Fabrication
75(1)
2.7.3 Active Glass Optical Fibers
76(1)
2.7.4 Plastic Optical Fibers
76(1)
2.8 Photonic Crystal Fiber Concepts
76(3)
2.8.1 Index-Guiding PCF
77(1)
2.8.2 Photonic Bandgap Fiber
78(1)
2.9 Optical Fiber Cables
79(6)
2.9.1 Fiber Optic Cable Structures
80(3)
2.9.2 Designs of Indoor Optical Cables
83(1)
2.9.3 Designs of Outdoor Optical Cables
83(2)
2.10 Summary
85(1)
Appendix: The Fresnel Equations
86(4)
References
90(3)
3 Optical Signal Attenuation and Dispersion
93(54)
3.1 Fiber Attenuation
94(13)
3.1.1 Units for Fiber Attenuation
94(2)
3.1.2 Absorption of Optical Power
96(5)
3.1.3 Scattering Losses in Optical Fibers
101(2)
3.1.4 Fiber Bending Losses
103(2)
3.1.5 Core and Cladding Propagation Losses
105(2)
3.2 Optical Signal Dispersion Effects
107(15)
3.2.1 Origins of Signal Dispersion
108(2)
3.2.2 Modal Delay Effects
110(3)
3.2.3 Factors Contributing to Dispersion
113(1)
3.2.4 Group Delay Results
114(2)
3.2.5 Material-Induced Dispersion
116(2)
3.2.6 Effects of Waveguide Dispersion
118(1)
3.2.7 Dispersion Behavior in Single-Mode Fibers
119(1)
3.2.8 Origin of Polarization-Mode Dispersion
120(2)
3.3 Design and Characteristics of SMFs
122(9)
3.3.1 Tailoring of Refractive Index Profiles
123(2)
3.3.2 Concept of Cutoff Wavelength
125(2)
3.3.3 Standards for Dispersion Calculations
127(3)
3.3.4 Definition of Mode-Field Diameter
130(1)
3.3.5 Bending Loss in Single-Mode Fibers
130(1)
3.4 ITU-T Standards for Fibers
131(5)
3.4.1 Recommendation G.651.1
132(1)
3.4.2 Recommendation G.652
133(1)
3.4.3 Recommendation G.653
134(1)
3.4.4 Recommendation G.654
134(1)
3.4.5 Recommendation G.655
135(1)
3.4.6 Recommendation G.656
135(1)
3.4.7 Recommendation G.657
135(1)
3.5 Designs and Use of Specialty Fibers
136(3)
3.6 Character of Multicore Optical Fibers
139(1)
3.7 Summary
140(4)
References
144(3)
4 Light Sources for Fiber Links
147(62)
4.1 Basic Concepts of Semiconductor Physics
148(10)
4.1.1 Semiconductor Energy Bands
149(4)
4.1.2 Intrinsic and Extrinsic Materials
153(1)
4.1.3 Concept of a pn Junction
154(2)
4.1.4 Direct Bandgap and Indirect Bandgap
156(1)
4.1.5 Fabrication of Semiconductor Devices
156(2)
4.2 Principles of Light-Emitting Diodes (LEDs)
158(14)
4.2.1 LED Structures
158(3)
4.2.2 Semiconductor Materials for Light Sources
161(5)
4.2.3 LED Quantum Efficiency and Output Power
166(4)
4.2.4 Response Time of an LED
170(2)
4.3 Principles of Laser Diodes
172(27)
4.3.1 Modes and Threshold Conditions in Laser Diodes
173(8)
4.3.2 Laser Diode Rate Equations
181(2)
4.3.3 External Differential Quantum Efficiency
183(1)
4.3.4 Laser Resonant Frequencies
183(3)
4.3.5 Structures and Radiation Patterns of Laser Diodes
186(2)
4.3.6 Lasers Operating in a Single Mode
188(3)
4.3.7 Modulation of Laser Diodes
191(2)
4.3.8 Laser Output Spectral Width
193(1)
4.3.9 External Laser Light Modulation
194(2)
4.3.10 Lasing Threshold Temperature Effects
196(3)
4.4 Output Linearity of Light Sources
199(2)
4.5 Summary
201(6)
References
207(2)
5 Optical Power Coupling
209(32)
5.1 Source-to-Fiber Power Coupling
210(10)
5.1.1 Light Source Emission Patterns
210(2)
5.1.2 Calculation of Power Coupling
212(6)
5.1.3 Optical Coupling Versus Wavelength
218(1)
5.1.4 Equilibrium Numerical Aperture
219(1)
5.2 Coupling Improvement with Lensing Schemes
220(3)
5.3 Losses Between Fiber Joints
223(13)
5.3.1 Mechanical Misalignment Effects
226(6)
5.3.2 Fiber Variation Losses
232(2)
5.3.3 Single-Mode Fiber Losses
234(1)
5.3.4 Preparation of Fiber End Faces
235(1)
5.4 Summary
236(3)
References
239(2)
6 Photodetection Devices
241(26)
6.1 Operation of Photodiodes
242(8)
6.1.1 The pin Photodetector
242(7)
6.1.2 Basics of Avalanche Photodiodes
249(1)
6.2 Noise Effects in Photodetectors
250(7)
6.2.1 Signal-to-Noise Ratio
250(1)
6.2.2 Sources of Photodetector Noise
251(3)
6.2.3 Signal-to-Noise Ratio Limits
254(2)
6.2.4 Noise-Equivalent Power and Detectivity
256(1)
6.3 Response Times of Photodiodes
257(5)
6.3.1 Photocurrent in the Depletion Layer
257(2)
6.3.2 Response Time Characteristics
259(3)
6.4 Comparisons of Photodetectors
262(1)
6.5 Summary
263(3)
References
266(1)
7 Optical Receiver Operation
267(36)
7.1 Basic Receiver Operation
268(8)
7.1.1 Transmitting Digital Signals
269(1)
7.1.2 Sources of Detection Errors
270(4)
7.1.3 Receiver Front-End Amplifiers
274(2)
7.2 Performance Characteristics of Digital Receivers
276(11)
7.2.1 Determining Probability of Error
276(6)
7.2.2 Specifying Receiver Sensitivity
282(3)
7.2.3 The Basic Quantum Limit
285(2)
7.3 Principles of Eye Diagrams
287(4)
7.3.1 Features of Eye Patterns
287(3)
7.3.2 BER and Q-Factor Measurements
290(1)
7.4 Burst-Mode Receivers
291(3)
7.5 Characteristics of Analog Receivers
294(4)
7.6 Summary
298(3)
References
301(2)
8 Digital Optical Fiber Links
303(60)
8.1 Basic Optical Fiber Links
304(18)
8.1.1 Signal Formats for Transporting Information
306(2)
8.1.2 Considerations for Designing Links
308(1)
8.1.3 Creating a Link Power Budget
309(5)
8.1.4 Formulating a Rise-Time Budget
314(5)
8.1.5 Transmission at Short Wavelengths
319(1)
8.1.6 Attenuation Limits for SMF Links
320(2)
8.2 Concepts of Link Power Penalties
322(11)
8.2.1 Power Penalties from Chromatic Dispersion
322(3)
8.2.2 Power Penalties Arising from PMD
325(1)
8.2.3 Extinction Ratio Power Penalties
326(1)
8.2.4 Modal Noise Power Penalties
327(1)
8.2.5 Power Penalties Due to Mode-Partition Noise
328(2)
8.2.6 Chirping-Induced Power Penalties
330(1)
8.2.7 Link Instabilities from Reflection Noise
331(2)
8.3 Detection and Control of Errors
333(7)
8.3.1 Concept of Error Detection
334(1)
8.3.2 Codes Used for Linear Error Detection
335(1)
8.3.3 Error Detection with Polynomial Codes
335(4)
8.3.4 Using Redundant Bits for Error Correction
339(1)
8.4 Coherent Detection Schemes
340(12)
8.4.1 Fundamental Concepts
341(2)
8.4.2 Homodyne Detection
343(1)
8.4.3 Heterodyne Detection
344(1)
8.4.4 SNR in Coherent Detection
344(2)
8.4.5 BER Comparisons in Coherent Detection
346(6)
8.5 Higher-Order Signal Modulation Formats
352(3)
8.5.1 Concept of Spectral Efficiency
352(1)
8.5.2 Phase Shift Keying or IQ Modulation
352(1)
8.5.3 Differential Quadrature Phase-Shift Keying
353(1)
8.5.4 Quadrature Amplitude Modulation (QAM)
354(1)
8.6 Summary
355(6)
References
361(2)
9 Analog Optical Fiber Channels
363(20)
9.1 Basic Elements of Analog Links
364(1)
9.2 Concept of Carrier-to-Noise Ratio
365(6)
9.2.1 Carrier Power
366(1)
9.2.2 Photodetector and Preamplifier Noises
367(1)
9.2.3 Effects of Relative Intensity Noise (RIN)
368(1)
9.2.4 Limiting C/N Conditions
369(2)
9.3 Multichannel Amplitude Modulation
371(3)
9.4 Spurious-Free Dynamic Range
374(2)
9.5 Radio-Over-Fiber Links
376(1)
9.6 Microwave Photonics
377(1)
9.7 Summary
378(3)
References
381(2)
10 Wavelength Division Multiplexing (WDM)
383(54)
10.1 Concepts of WDM
384(5)
10.1.1 WDM Operational Principles
384(3)
10.1.2 Standards for WDM
387(2)
10.2 Passive Optical Couplers
389(20)
10.2.1 The 2 × 2 Fiber Coupler
390(6)
10.2.2 Scattering Matrix Analyses of Couplers
396(2)
10.2.3 Basis of the 2 × 2 Waveguide Coupler
398(4)
10.2.4 Principal Role of Star Couplers
402(3)
10.2.5 Mach-Zehnder Interferometry Techniques
405(4)
10.3 Nonreciprocal Isolators and Circulators
409(3)
10.3.1 Functions of Optical Isolators
409(2)
10.3.2 Characteristics of Optical Circulators
411(1)
10.4 WDM Devices Based on Grating Principles
412(6)
10.4.1 Grating Basics
412(1)
10.4.2 Optical Fiber Bragg Grating (FBG)
413(3)
10.4.3 WDM FBG Applications
416(2)
10.5 Dielectric Thin-Film Filter (TFF)
418(5)
10.5.1 Applications of Etalon Theory
419(3)
10.5.2 TFF Applications to WDM Links
422(1)
10.6 Arrayed Waveguide Devices
423(5)
10.7 WDM Applications of Diffraction Gratings
428(2)
10.8 Summary
430(4)
References
434(3)
11 Basics of Optical Amplifiers
437(40)
11.1 Fundamental Optical Amplifier Types
438(3)
11.1.1 General Applications of Optical Amplifiers
438(2)
11.1.2 Amplifier Classifications
440(1)
11.2 Semiconductor Optical Amplifiers
441(7)
11.2.1 External Pumping of Active Medium
442(3)
11.2.2 Amplifier Signal Gain
445(2)
11.2.3 SOA Bandwidth
447(1)
11.3 Erbium-Doped Fiber Amplifiers
448(7)
11.3.1 Basics of Fiber Amplifier Pumping
448(3)
11.3.2 Construction of an EDFA
451(1)
11.3.3 EDFA Power-Conversion Efficiency and Gain
452(3)
11.4 Noises Generated in Optical Amplifiers
455(3)
11.5 Optical Signal-To-Noise Ratio (OSNR)
458(2)
11.6 Fiber Link Applications
460(4)
11.6.1 Power Amplifier Functions
460(1)
11.6.2 Use of In-Line Amplifiers
461(2)
11.6.3 Optical Amplifier as a Preamplifier
463(1)
11.7 Raman Optical Amplifiers
464(3)
11.7.1 Principle of Raman Gain
464(2)
11.7.2 Pump Lasers for Raman Amplifiers
466(1)
11.8 Multiband Optical Amplifiers
467(1)
11.9 Overview of Optical Fiber Lasers
468(2)
11.10 Summary
470(4)
References
474(3)
12 Nonlinear Processes in Optical Fibers
477(30)
12.1 Classifications of Nonlinearities
478(1)
12.2 Effective Length and Effective Area
479(2)
12.3 Stimulated Raman Scattering
481(3)
12.4 Stimulated Brillouin Scattering
484(2)
12.5 Self-Phase Modulation
486(2)
12.6 Cross-Phase Modulation in WDM Systems
488(1)
12.7 Four-Wave Mixing in WDM Channels
489(2)
12.8 Mitigation Schemes for FWM
491(1)
12.9 Basic Optical Wavelength Converters
492(3)
12.9.1 Wavelength Converters Using Optical Gatings
493(1)
12.9.2 Wavelength Converters Based on Wave-Mixing
494(1)
12.10 Principles of Solitons
495(8)
12.10.1 Structures of Soliton Pulses
495(4)
12.10.2 Fundamental Parameters for Solitons
499(2)
12.10.3 Width and Spacing of Soliton Pulses
501(2)
12.11 Summary
503(2)
References
505(2)
13 Fiber Optic Communication Networks
507(70)
13.1 Concepts of Optical Networks
508(6)
13.1.1 Terminology Used for Networks
508(1)
13.1.2 Generic Network Categories
509(3)
13.1.3 Layered Structure Approach to Network Architectures
512(2)
13.1.4 Optical Layer Functions
514(1)
13.2 Common Network Topologies
514(5)
13.2.1 Performance of Passive Linear Buses
516(1)
13.2.2 Performance of Star Networks
517(2)
13.3 Basic SONET/SDH Concepts
519(10)
13.3.1 SONET/SDH Frame Formats and Speeds
519(3)
13.3.2 Optical Interfaces in SONET/SDH
522(2)
13.3.3 SONET/SDH Rings
524(3)
13.3.4 SONET/SDH Network Architectures
527(2)
13.4 High-Speed Lightwave Transceivers
529(6)
13.4.1 Links Operating at 10 Gb/s
530(3)
13.4.2 Transceivers for 40 Gb/s Links
533(1)
13.4.3 Transceivers for 100 Gb/s Links
534(1)
13.4.4 Links Operating at 400 Gb/s and Higher
535(1)
13.5 Schemes for Optical Add/Drop Multiplexing
535(7)
13.5.1 Configurations of OADM Equipment
536(1)
13.5.2 Reconfiguring OADM Equipment
537(5)
13.6 Optical Switching Architectures
542(10)
13.6.1 Concept of an Optical CrossConnect
543(2)
13.6.2 Considerations for Wavelength Conversion
545(2)
13.6.3 Methodologies for Wavelength Routing
547(1)
13.6.4 Optical Packet Switching
548(1)
13.6.5 Optical Burst Switching
549(2)
13.6.6 Elastic Optical Networks
551(1)
13.7 WDM Network Implementations
552(4)
13.7.1 Long-Distance WDM Networks
552(2)
13.7.2 Metro WDM Networks
554(1)
13.7.3 Data Center Networks
555(1)
13.8 Passive Optical Networks
556(10)
13.8.1 Basic Architectures for PONs
557(2)
13.8.2 Active PON Modules
559(2)
13.8.3 Controlling PON Traffic Flows
561(2)
13.8.4 Protection Switching for PON Configurations
563(1)
13.8.5 WDM PON Architectures
564(2)
13.9 Summary
566(6)
References
572(5)
14 Basic Measurement and Monitoring Techniques
577(2)
14.1 Overview of Measurement Standards
579(1)
14.2 Survey of Test Equipment
580(2)
14.2.1 Lasers Used for Test Support
582(1)
14.2.2 Optical Spectrum Analyzer
582(1)
14.2.3 Multipurpose Test Equipment
583(1)
14.2.4 Optical Attenuators
584(1)
14.2.5 OTN Tester for Performance Verification
584(1)
14.2.6 Visual Fault Indicator
585(1)
14.3 Optical Power Measurement Methods
585(2)
14.3.1 Physical Basis of Optical Power
585(2)
14.3.2 Optical Power Meters
587(1)
14.4 Characterization of Optical Fibers
587(5)
14.4.1 Refracted Near-Field Method
587(1)
14.4.2 Transmitted Near-Field Technique
588(1)
14.4.3 Optical Fiber Attenuation Measurements
588(4)
14.5 Concept of Eye Diagram Tests
592(4)
14.5.1 Standard Mask Testing
594(1)
14.5.2 Stressed Eye Opening
595(1)
14.5.3 BER Contours
596(1)
14.6 Optical Time-Domain Reflectometer
596(7)
14.6.1 OTDR Trace Characterization
597(2)
14.6.2 Attenuation Measurements with an OTDR
599(1)
14.6.3 OTDR Dead Zone
600(1)
14.6.4 Locating Fiber Faults
601(1)
14.6.5 Measuring Optical Return Loss
602(1)
14.7 Optical Performance Monitoring
603(8)
14.7.1 Network Management Systems and Functions
604(2)
14.7.2 Optical Layer Management
606(2)
14.7.3 Fundamental OPM Function
608(1)
14.7.4 OPM Architecture for Network Maintenance
609(1)
14.7.5 Detecting Network Faults
610(1)
14.8 Optical Fiber Network Performance Testing
611(8)
14.8.1 BER Measurements
612(1)
14.8.2 OSNR Measurements
613(2)
14.8.3 Q Factor Estimation
615(1)
14.8.4 OMA Measurement Method
616(2)
14.8.5 Measurement of Timing Jitter
618(1)
14.9 Summary
619(3)
References
622(1)
Correction to: Fiber Optic Communications 1 622(1)
Appendix A International Units and Physical Constants 623(2)
Appendix B Decibels 625(2)
Appendix C Acronyms 627(8)
Appendix D List of Important Roman Symbols 635(4)
Appendix E List of Important Greek Symbols 639
Gerd Keiser is Research Professor at Boston University and Professor and Consultant at PhotonicsComm Solutions, a firm specializing in education and consulting for the optical communications and biophotonics industries. Previously, he was involved with telecom technologies at Honeywell, GTE, and General Dynamics. His technical achievements at GTE earned him the prestigious Leslie Warner Award. In addition, he has served as Adjunct Professor of Electrical Engineering at Northeastern University, Boston University, and Tufts University and was Industrial Advisor to the Wentworth Institute of Technology. Formerly, he was Chair Professor in the Electronics Engineering Department at the National Taiwan University of Science and Technology. He also was Visiting Researcher at the Agency for Science, Technology, and Research (A*STAR) in Singapore and at the University of Melbourne, Australia. He is a Life Fellow of the IEEE, Fellow of OSA and SPIE, Associate Editor and Reviewer of several technical journals, and Author of five books. He received his B.A. and M.S. degrees in Mathematics and Physics from the University of Wisconsin and a Ph.D. in Physics from Northeastern University. His professional experience and research interests are in the general areas of optical networking and biophotonics.