Fiber Optics: Principles and Advanced Practices, Second Edition 2nd New edition [Hardback]

(Algonquin College, Ottawa, Ontario, Canada)
  • Formāts: Hardback, 448 pages, height x width: 254x178 mm, weight: 998 g, 250 Illustrations, black and white
  • Izdošanas datums: 04-May-2017
  • Izdevniecība: Productivity Press
  • ISBN-10: 1498774326
  • ISBN-13: 9781498774321
  • Hardback
  • Cena: 95,89 EUR*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 172,62 EUR
  • Ietaupiet 44%
  • Pievienot vēlmju sarakstam
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Ielikt grozā
  • Daudzums:
  • Piegādes laiks - 4-6 nedēļas
  • Bibliotēkām
  • Formāts: Hardback, 448 pages, height x width: 254x178 mm, weight: 998 g, 250 Illustrations, black and white
  • Izdošanas datums: 04-May-2017
  • Izdevniecība: Productivity Press
  • ISBN-10: 1498774326
  • ISBN-13: 9781498774321

This book provides a step-by-step discussion through each topic of fiber optics. Each chapter explores theoretical concepts of principles and then applies them by using experimental cases with numerous illustrations. The book works systematically through fiber optic cables, advanced fiber optic cables, light attenuation in optical components, fiber optic cable types and installations, fiber optic connectors, passive fiber optic devices, wavelength division multiplexing, optical amplifiers, optical receivers, opto-mechanical switches, and optical fiber communications. It includes important chapters in fiber optic lighting, fiber optics testing, and laboratory safety.

Recenzijas

"Experiments are detailed and thorough, which make it easy for the students to understand and perform experiments, as well as compare the results with the theory. Adding a laser technology chapter in the current edition is certainly a positive approach to introduce new lasers." - Kaisar R. Khan, McNeese State University, Lake Charles, Louisiana, USA "The practical approach and integration of the experimental work with the guiding text is very useful. This book provides some of the basic methods used in optical fiber systems in a very readable form with practical advice and steps to follow." -John Girkin, Durham University, United Kingdom "The book is easy to read. It is written for a wide range of readers' background. The book emphasizes the practical aspects of fiber optics and its applications." -Nagwa Bekir, California State University Northridge, USA "... it could be a very useful reference for an instructor teaching a course on fiber optics." -Optics & Photonics News, November 2017

Preface xxiii
Acknowledgements xxv
Author xxvii
Contributors xxix
Chapter 1 Fibre-Optic Cables 1(44)
1.1 Introduction
1(1)
1.2 The Evolution of Fibre-Optic Cables
1(3)
1.3 Fibre-Optic Cables
4(2)
1.4 Plastic Fibre Cables
6(1)
1.5 Light Propagation in Fibre-Optic Cables
6(2)
1.6 Refractive-Index Profile
8(1)
1.7 Types of Fibre-Optic Cables
8(2)
1.7.1 Single-Mode Step-Index Fibre Cable
9(1)
1.7.2 Multi-Mode Step-Index Fibre Cable (Multi-Mode Fibre Cable)
9(1)
1.7.3 Multi-Mode Graded-Index Fibre (Graded-Index Fibre Cable)
9(1)
1.8 Polarisation Maintaining Fibre Cables
10(1)
1.9 Specialty Fibre Cables
11(1)
1.10 Fibre Cable Fabrication Techniques
11(5)
1.10.1 Double Crucible Method
11(1)
1.10.2 Chemical Vapour Deposition Processes
12(1)
1.10.3 Outside Vapour Deposition
13(1)
1.10.4 Vapour Axial Deposition
14(1)
1.10.5 Modified Chemical Vapour Deposition
15(1)
1.10.6 Plasma Chemical Vapour Deposition
16(1)
1.11 Fibre Drawing
16(1)
1.12 Numerical Aperture
17(1)
1.13 Modes in a Fibre-Optic Cable
18(1)
1.14 Light Source Coupling to a Fibre Cable
19(2)
1.15 Launching Light Conditions into Fibre Cables
21(2)
1.16 Fibre Tube Assembly
23(5)
1.16.1 Manufacturing of a Fibre Tube Assembly
23(2)
1.16.2 Experimental Work for Testing Fibre Tube Assembly
25(5)
1.16.2.1 Technique and Apparatus
25(1)
1.16.2.2 Procedure
26(1)
1.16.2.3 Safety Procedure
26(1)
1.16.2.4 Apparatus Set-Up
26(2)
1.16.2.5 Data Collection
28(1)
1.16.2.6 Calculations and Analysis
28(1)
1.16.2.7 Results and Discussions
28(1)
1.16.2.8 Conclusion
28(1)
1.16.2.9 Suggestions for Future Lab Work
28(1)
1.16.2.10 References
28(1)
1.16.2.11 Appendix
28(1)
1.17 Fibre-Optic Cables versus Copper Cables
28(1)
1.18 Applications of Fibre-Optic Cables
29(1)
1.19 Experimental Work
30(13)
1.19.1 Case (a): Fibre Cable Inspection and Handling
30(1)
1.19.2 Case (b): Fibre Cable Ends Preparation
30(1)
1.19.3 Case (c): Numerical Aperture and Acceptance Angles Calculation
31(1)
1.19.4 Case (d): Fibre Cable Power Output Intensity
31(1)
1.19.5 Technique and Apparatus
32(1)
1.19.6 Procedure
33(1)
1.19.7 Safety Procedure
33(1)
1.19.8 Apparatus Set-Up
33(8)
1.19.8.1 Case (a): Fibre Cable Inspection and Handling
33(2)
1.19.8.2 Case (b): Fibre Cable Ends Preparation
35(4)
1.19.8.3 Case (c): NA and Acceptance Angles Calculation
39(1)
1.19.8.4 Case (d): Fibre Cable Power Output Intensity
40(1)
1.19.9 Data Collection
41(1)
1.19.9.1 Case (a): Fibre Cable Inspection and Handling
41(1)
1.19.9.2 Case (b): Fibre Cable Ends Preparation
42(1)
1.19.9.3 Case (c): NA and Acceptance Angles Calculation
42(1)
1.19.9.4 Case (d): Fibre Cable Power Output Intensity
42(1)
1.19.10 Calculations and Analysis
42(1)
1.19.10.1 Case (a): Fibre Cable Inspection and Handling
42(1)
1.19.10.2 Case (b): Fibre Cable Ends Preparation
42(1)
1.19.10.3 Case (c): NA and Acceptance Angles Calculation
42(1)
1.19.10.4 Case (d): Fibre Cable Power Output Intensity
42(1)
1.19.11 Results and Discussions
42(1)
1.19.11.1 Case (a): Fibre Cable Inspection and Handling
42(1)
1.19.11.2 Case (b): Fibre Cable Ends Preparation
42(1)
1.19.11.3 Case (c): NA and Acceptance Angles Calculation
42(1)
1.19.11.4 Case (d): Fibre Cable Power Output Intensity
43(1)
1.19.12 Conclusion
43(1)
1.19.13 Suggestions for Future Lab Work
43(1)
1.20 List of References
43(1)
1.21 Appendix
43(1)
Further Reading
43(2)
Chapter 2 Advanced Fibre-Optic Cables 45(18)
2.1 Introduction
45(1)
2.2 Advanced Types of Fibre-Optic Cables
45(13)
2.2.1 Dual-Core Fibre for High-Power Laser
46(1)
2.2.2 Fibre Bragg Gratings
46(2)
2.2.2.1 Manufacturing Method
47(1)
2.2.3 Chirped Fibre Bragg Gratings
48(1)
2.2.3.1 Manufacturing Method
49(1)
2.2.4 Blazed Fibre Bragg Gratings
49(1)
2.2.5 Non-Zero-Dispersion Fibre-Optic Cables
50(1)
2.2.6 Photonic Crystal Fibre Cables
50(2)
2.2.7 Microstructure Fibre Cables
52(1)
2.2.8 Polymer Holey-Fibre Cables
53(1)
2.2.9 Image Fibre Cables
53(1)
2.2.10 Liquid Crystal Photonic Band Gap Fibre Cables
54(1)
2.2.11 Lensed and Tapered Fibre Cables
54(3)
2.2.11.1 Advantages of Lensing Technology
55(1)
2.2.11.2 Manufacturing Technologies
56(1)
2.2.12 Bend-Insensitive Fibre Cables
57(1)
2.2.13 Nanoribbon Fibre-Optic Cables
57(1)
2.3 Applications of Advanced Fibre Cables
58(1)
2.4 Experimental Work
59(1)
2.4.1 Conclusion
59(1)
2.4.2 Suggestions for Future Lab Work
59(1)
2.5 List of References
60(1)
2.6 Appendix
60(1)
Further Reading
60(3)
Chapter 3 Light Attenuation in Optical Components 63(20)
3.1 Introduction
63(1)
3.2 Light Losses in an Optical Material
63(4)
3.2.1 Absorption
64(1)
3.2.2 Dispersion
64(1)
3.2.3 Scattering
64(1)
3.2.4 Light Loss in Parallel Optical Surfaces
64(1)
3.2.5 Light Loss in an Epoxy Layer
65(1)
3.2.6 Bending and Micro-Bending
66(1)
3.3 Attenuation Calculations
67(1)
3.4 Experimental Work
68(12)
3.4.1 Technique and Apparatus
69(1)
3.4.2 Procedure
70(1)
3.4.3 Safety Procedure
70(1)
3.4.4 Apparatus Set-Up
70(8)
3.4.4.1 Laser Light Power Loss through One to Five Microscope Slides
70(1)
3.4.4.2 Laser Light Power Loss through a Single Slide Inclined at Different Angles
71(1)
3.4.4.3 Laser Light Power Loss through an Epoxy Layer between Two Slides
72(3)
3.4.4.4 Laser Light Power Loss through a Fibre-Optic Cable
75(1)
3.4.4.5 Laser Light Power Loss through a Fibre-Optic Cable due to Micro-Bending
76(1)
3.4.4.6 Laser Light Power Loss through a Fibre-Optic Cable Coupled to a GRIN Lens at the Input and/or Output
77(1)
3.4.5 Data Collection
78(1)
3.4.5.1 Laser Light Power Loss through One to Five Microscope Slides
78(1)
3.4.5.2 Laser Light Power Loss through a Single Slide Inclined at Different Angles
78(1)
3.4.5.3 Laser Light Power Loss through an Epoxy Layer between Two Slides
78(1)
3.4.5.4 Laser Light Power Loss through a Fibre-Optic Cable
78(1)
3.4.5.5 Laser Light Power Loss through a Fibre-Optic Cable due to Micro-Bending
79(1)
3.4.5.6 Laser Light Power Loss through a Fibre-Optic Cable Coupled to a GRIN Lens at the Input and/or Output
79(1)
3.4.6 Calculations and Analysis
79(1)
3.4.6.1 Laser Light Power Loss through One to Five Microscope Slides
79(1)
3.4.6.2 Laser Light Power Loss through a Single Slide Inclined at Different Angles
79(1)
3.4.6.3 Laser Light Power Loss through an Epoxy Layer between Two Slides
79(1)
3.4.6.4 Laser Light Power Loss through a Fibre-Optic Cable
79(1)
3.4.6.5 Laser Light Power Loss through a Fibre-Optic Cable due to Micro-Bending
79(1)
3.4.6.6 Laser Light Power Loss through a Fibre-Optic Cable Coupled to a GRIN Lens at the Input and/or Output
79(1)
3.4.7 Results and Discussions
80(1)
3.4.7.1 Laser Light Power Loss through One to Five Microscope Slides
80(1)
3.4.7.2 Laser Light Power Loss through a Single Slide Inclined at Different Angles
80(1)
3.4.7.3 Laser Light Power Loss through an Epoxy Layer between Two Slides
80(1)
3.4.7.4 Laser Light Power Loss through a Fibre-Optic Cable
80(1)
3.4.7.5 Laser Light Power Loss through a Fibre-Optic Cable due to Micro-Bending
80(1)
3.4.7.6 Laser Light Power Loss through a Fibre-Optic Cable Coupled to a GRIN Lens at the Input and/or Output
80(1)
3.4.8 Conclusion
80(1)
3.4.9 Suggestions for Future Lab Work
80(1)
3.5 List of References
80(1)
3.6 Appendix
81(1)
Further Reading
81(2)
Chapter 4 Fibre-Optic Cable Types and Installations 83(16)
4.1 Introduction
83(1)
4.2 Fibre-Optic Cable Types and Applications
83(4)
4.2.1 Indoor Fibre-Optic Cable Types and Applications
84(1)
4.2.2 Outdoor Fibre-Optic Cable Types and Applications
85(1)
4.2.3 Indoor/Outdoor Fibre-Optic Cable Types and Applications
85(1)
4.2.4 Other Fibre-Optic Cable Types and Applications
86(1)
4.3 Fibre-Optic Cable Installation Methods
87(4)
4.3.1 Indoor Fibre-Optic Cable Installation
87(1)
4.3.2 Cable Installation in Tray and Duct Systems
87(1)
4.3.3 Conduit Installation
88(1)
4.3.4 Pulling Fibre-Optic Cable Installation
88(1)
4.3.5 Fibre-Optic Cables Direct Burial Installation
89(1)
4.3.6 Fibre-Optic Cable Aerial Installation
90(1)
4.3.7 Air-Blown Fibre-Cable Installation
90(1)
4.3.8 Other Fibre-Cable Installation Methods
91(1)
4.4 Standard Hardware for Fibre-Optic Cables
91(3)
4.4.1 Fibre-Splice Closures
91(1)
4.4.2 Rack with Panels
91(1)
4.4.3 Connector Housings
92(1)
4.4.4 Patch Panels
92(1)
4.4.5 Splice Housings
92(1)
4.4.6 Wall Outlets
92(1)
4.4.7 Fibre-Optic Testing Equipment
93(1)
4.5 Fibre-Optic Cable Test Requirements
94(1)
4.6 Experimental Work
95(2)
4.6.1 Technique and Apparatus
95(1)
4.6.2 Procedure
96(1)
4.6.3 Safety Procedure
96(1)
4.6.4 Apparatus Set-Up
96(1)
4.6.4.1 Fibre-Optic Cable Installation
96(1)
4.6.5 Data Collection
96(1)
4.6.6 Calculations and Analysis
96(1)
4.6.7 Results and Discussions
96(1)
4.6.8 Conclusion
96(1)
4.6.9 Suggestions for Future Lab Work
97(1)
4.7 List of References
97(1)
4.8 Appendix
97(1)
Further Reading
97(2)
Chapter 5 Fibre-Optic Connectors 99(22)
5.1 Introduction
99(1)
5.2 Applications of Connectors and Splices
99(1)
5.3 Requirements of Connectors and Splices
100(1)
5.4 Fibre Connectors
100(2)
5.5 Mechanical Considerations
102(1)
5.5.1 Durability
102(1)
5.5.2 Environmental Considerations
103(1)
5.5.3 Compatibility
103(1)
5.6 Fibre-Optic Connector Types
103(1)
5.7 Adapters for Different Fibre-Optic Connector Types
104(1)
5.8 Fibre-Optic Connector Structures
104(1)
5.9 Fibre-Optic Connector Assembly Techniques
104(6)
5.9.1 Common Fibre-Connector Assembly
105(1)
5.9.2 Hot-Melt Connector
105(1)
5.9.3 Epoxyless Connector
105(1)
5.9.4 Automated Polishing
106(1)
5.9.5 Fluid-Jet Polishing
106(1)
5.9.6 Fibre-Optic Connector Cleaning
106(1)
5.9.7 Connector Testing
106(1)
5.10 Fibre Splicing
106(2)
5.10.1 Mechanical Splicing
108(2)
5.10.1.1 Key-Lock Mechanical Fibre-Optic Splices
109(1)
5.10.1.2 Table-Type Mechanical Fibre-Optic Splices
109(1)
5.11 Fusion Splices
110
5.11.1 Splice Testing
110
5.12 Connectors versus Splices 1
11(100)
5.13 Experimental Work
111(8)
5.13.1 Technique and Apparatus
111(1)
5.13.2 Procedure
112(1)
5.13.3 Safety Procedure
112(1)
5.13.4 Apparatus Set-Up
112(6)
5.13.4.1 Case (a): Building FSMA Connectors
112(2)
5.13.4.2 Case (b): Testing Connection Loss in Two Connectors
114(1)
5.13.4.3 Case (c): Testing Connection Loss in a Mechanical Splice
115(2)
5.13.4.4 Case (d): Testing Connection Loss in a Fusion Splice
117(1)
5.13.5 Data Collection
118(1)
5.13.5.1 Case (a): Building a Connector
118(1)
5.13.5.2 Case (b): Testing Connection Loss in Two Connectors
118(1)
5.13.5.3 Case (c): Testing Connection Loss in a Mechanical Splice
118(1)
5.13.5.4 Case (d): Testing Connection Loss in a Fusion Splice
118(1)
5.13.6 Calculations and Analysis
118(1)
5.13.6.1 Case (a): Building a Connector
118(1)
5.13.6.2 Case (b): Testing Connection Loss in Two Connectors
118(1)
5.13.6.3 Case (c): Testing Connection Loss in a Mechanical Splice
118(1)
5.13.6.4 Case (d): Testing Connection Loss in a Fusion Splice
118(1)
5.13.7 Results and Discussions
118(1)
5.13.7.1 Case (a): Building a Connector
118(1)
5.13.7.2 Case (b): Testing Connection Loss in Two Connectors
119(1)
5.13.7.3 Case (c): Testing Connection Loss in a Mechanical Splice
119(1)
5.13.7.4 Case (d): Testing Connection Loss in a Fusion Splice
119(1)
5.13.8 Conclusion
119(1)
5.13.9 Suggestions for Future Lab Work
119(1)
5.14 List of References
119(1)
5.15 Appendix
119(1)
Further Reading
119(2)
Chapter 6 Passive Fibre-Optic Devices 121(32)
6.1 Introduction
121(1)
6.2 2 x 2 Couplers
121(2)
6.3 3 dB Couplers
123(1)
6.4 Y-Couplers
124(1)
6.5 Star Couplers
125(1)
6.6 Coupler Construction
125(1)
6.6.1 Fused Taper Couplers
126(1)
6.6.2 Polishing D-Section Couplers
126(1)
6.6.3 Twin Core Fibre Couplers
126(1)
6.7 The Principle of Reciprocity
126(1)
6.8 Proximity Sensor
127(1)
6.9 Mach-Zehnder Interferometer
127(1)
6.10 Optical Isolators
128(1)
6.11 Optical Circulators
129(1)
6.12 Optical Filters
130(5)
6.12.1 Fixed Optical Filters
131(1)
6.12.2 Tunable Optical Filters
132(4)
6.12.2.1 Fibre Fabry-Perot Tunable Filters
132(1)
6.12.2.2 Mach-Zehnder Interferometer Tunable Filters
133(1)
6.12.2.3 Fibre Grating Tunable Filters
133(1)
6.12.2.4 Liquid Crystal Tunable Filters
134(1)
6.12.2.5 Acousto-Optic Tunable Filters
134(1)
6.12.2.6 Thermo-Optic Tunable Filters
134(1)
6.12.2.7 Other Types of Tunable Filters
135(1)
6.13 Optical Fibre Ring Resonators
135(1)
6.14 Optical Modulators
135(1)
6.15 Optical Attenuators
136(1)
6.15.1 Fixed Attenuators
136(1)
6.15.2 Variable Attenuators
136(1)
6.16 Optical Spectrometers
136(2)
6.17 Experimental Work
138(12)
6.17.1 Technique and Apparatus
139(1)
6.17.2 Procedure
139(1)
6.17.3 Safety Procedure
139(1)
6.17.4 Apparatus Set-Up
140(8)
6.17.4.1 Testing a 3 dB Coupler
140(1)
6.17.4.2 Testing a 1 x 4 3 dB Coupler
141(1)
6.17.4.3 Manufacturing a Y-Coupler in the Lab
141(3)
6.17.4.4 Testing a Y-Coupler
144(1)
6.17.4.5 Testing a 1 x 4 Y-Coupler
145(1)
6.17.4.6 Testing a Proximity Sensor
146(2)
6.17.5 Data Collection
148(1)
6.17.5.1 Testing a 3 dB Coupler
148(1)
6.17.5.2 Testing a 1 x 4 3 dB Coupler
148(1)
6.17.5.3 Manufacturing a Y-Coupler in the Lab
148(1)
6.17.5.4 Testing a Y-Coupler
148(1)
6.17.5.5 Testing a 1 x 4 Y-Coupler
148(1)
6.17.5.6 Testing a Proximity Sensor
148(1)
6.17.6 Calculations and Analysis
149(1)
6.17.6.1 Testing a 3 dB Coupler
149(1)
6.17.6.2 Testing a 1 x 4 3 dB Coupler
149(1)
6.17.6.3 Manufacturing a Y-Coupler in the Lab
149(1)
6.17.6.4 Testing a Y-Coupler
149(1)
6.17.6.5 Testing a 1 x 4 Y-Coupler
149(1)
6.17.6.6 Testing a Proximity Sensor
149(1)
6.17.7 Results and Discussions
149(1)
6.17.7.1 Testing a 3 dB Coupler
149(1)
6.17.7.2 Testing a 1 x 4 3 dB Coupler
150(1)
6.17.7.3 Manufacturing a Y-Coupler in the Lab
150(1)
6.17.7.4 Testing a Y-Coupler
150(1)
6.17.7.5 Testing a 1 x 4 Y-Coupler
150(1)
6.17.7.6 Testing a Proximity Sensor
150(1)
6.17.8 Conclusion
150(1)
6.17.9 Suggestions for Future Lab Work
150(1)
6.18 List of References
150(1)
6.19 Appendix
151(1)
Further Reading
151(2)
Chapter 7 Wavelength Division Multiplexer 153(24)
7.1 Introduction
153(1)
7.2 Wavelength Division Multiplexing
153(1)
7.3 Time-Division Multiplexing
154(1)
7.4 Frequency-Division Multiplexing
155(1)
7.5 Dense Wavelength Division Multiplexing
155(1)
7.6 Coarse Wavelength Division Multiplexing
155(1)
7.7 Techniques for Multiplexing and De-Multiplexing
156(4)
7.7.1 Multiplexing and De-Multiplexing Using a Prism
156(1)
7.7.2 Multiplexing and De-Multiplexing Using a Diffraction Grating
156(1)
7.7.3 Optical Add/Drop Multiplexers/De-Multiplexers
156(1)
7.7.4 Arrayed Waveguide Gratings
157(1)
7.7.5 Fibre Bragg Grating
158(1)
7.7.6 Thin Film Filters or Multi-Layer Interference Filters
158(1)
7.7.7 Periodic Filters, Frequency Slicers and Interleavers Multiplexing
159(1)
7.7.8 Mach-Zehnder Interferometer
159(1)
7.8 Wavelength Division Multiplexers and De-Multiplexers
160(1)
7.8.1 2-Channel WDM Devices
160(1)
7.8.2 8-Channel WDM Devices
161(1)
7.9 Experimental Work
161(14)
7.9.1 Wavelength Division Multiplexer
162(1)
7.9.2 Wavelength Division De-Multiplexer
162(1)
7.9.3 Technique and Apparatus
162(2)
7.9.4 Procedure
164(1)
7.9.5 Safety Procedure
164(1)
7.9.6 Apparatus Set-Up
165(9)
7.9.6.1 Wavelength Division Multiplexer
165(5)
7.9.6.2 Wavelength Division De-Multiplexer
170(4)
7.9.7 Data Collection
174(1)
7.9.7.1 Wavelength Division Multiplexer
174(1)
7.9.7.2 Wavelength Division De-Multiplexer
174(1)
7.9.8 Calculations and Analysis
174(1)
7.9.8.1 Wavelength Division Multiplexer
174(1)
7.9.8.2 Wavelength Division De-Multiplexer
174(1)
7.9.9 Results and Discussions
174(1)
7.9.9.1 Wavelength Division Multiplexer
174(1)
7.9.9.2 Wavelength Division De-Multiplexer
175(1)
7.9.10 Conclusion
175(1)
7.9.11 Suggestions for Future Lab Work
175(1)
7.10 List of References
175(1)
7.11 Appendix
175(1)
Further Reading
175(2)
Chapter 8 Optical Amplifiers 177(12)
8.1 Introduction
177(1)
8.2 Basic Applications of Optical Amplifiers
177(3)
8.2.1 In-Line Optical Amplifiers
178(1)
8.2.2 Post-Amplifier
178(1)
8.2.3 Pre-Amplifier
179(1)
8.2.4 In Local Area Networks
179(1)
8.3 Types of Optical Amplifiers
180(5)
8.3.1 Doped Fibre Optical Amplifiers
180(2)
8.3.1.1 Erbium-Doped Fibre Optical Amplifiers
180(2)
8.3.1.2 Praseodymium-Doped Fluoride Optical Amplifiers
182(1)
8.3.1.3 Neodymium-Doped Optical Amplifiers
182(1)
8.3.1.4 Telluride-Based, Erbium-Doped Fibre Optical Amplifiers
182(1)
8.3.1.5 Thulium-Doped Optical Amplifiers
182(1)
8.3.1.6 Other Doped Fibre Optical Amplifiers
182(1)
8.3.2 Semiconductor Optical Amplifiers
182(1)
8.3.3 Raman Fibre Optical Amplifiers
183(1)
8.3.4 Planer Waveguide Optical Amplifiers
184(1)
8.3.5 Linear Optical Amplifiers
185(1)
8.4 Other Types of Optical Amplifiers
185(1)
Further Reading
185(4)
Chapter 9 Optical Receivers and Senders 189(20)
9.1 Introduction
189(1)
9.2 Fibre-Optic Receivers
189(1)
9.3 Principles of Semiconductors
190(2)
9.3.1 N-Type and P-Type Semiconductors
191(1)
9.3.2 The Fundamentals of Photodetection
191(1)
9.3.3 Leakage Current
192(1)
9.3.4 Sources of Leakage Current
192(1)
9.4 Properties of Semiconductor Photodetectors
192(3)
9.4.1 Quantum Efficiency
192(1)
9.4.2 Responsivity
193(1)
9.4.3 Response Time
194(1)
9.4.4 Sensitivity
195(1)
9.5 Types of Optical Detectors
195(4)
9.5.1 Phototransistors
195(1)
9.5.2 Photovoltaics
196(1)
9.5.3 Metal-Semiconductor-Metal Detectors
197(1)
9.5.4 The p-i-n Photodiodes
197(1)
9.5.5 Avalanche Photodiodes
198(1)
9.6 Comparison of Photodetectors
199(1)
9.7 Experimental Work
200(7)
9.7.1 Measuring Light Power Using Two Photodetector Types
200(1)
9.7.2 Photovoltaic Panel Tests
200(1)
9.7.3 Technique and Apparatus
201(1)
9.7.4 Procedure
201(1)
9.7.5 Safety Procedure
201(1)
9.7.6 Apparatus Set-Up
202(3)
9.7.6.1 Measuring Light Power Using Two Photodetector Types
202(2)
9.7.6.2 Photovoltaic Panel Tests
204(1)
9.7.7 Data Collection
205(1)
9.7.7.1 Measuring Light Power Using Two Photodetector Types
205(1)
9.7.7.2 Photovoltaic Panel Tests
206(1)
9.7.8 Calculations and Analysis
206(1)
9.7.8.1 Measuring Light Power Using Two Photodetector Types
206(1)
9.7.8.2 Photovoltaic Panel Tests
206(1)
9.7.9 Results and Discussions
206(1)
9.7.9.1 Measuring Light Power Using Two Photodetector Types
206(1)
9.7.9.2 Photovoltaic Panel Tests
206(1)
9.7.10 Conclusion
207(1)
9.7.11 Suggestions for Future Lab Work
207(1)
9.8 List of References
207(1)
9.9 Appendix
207(1)
Further Reading
207(2)
Chapter 10 Optical Switches 209(42)
10.1 Introduction
209(1)
10.2 Opto-Mechanical Switches
209(12)
10.3 Electro-Optic Switches
221(1)
10.4 Thermo-Optic Switches
222(5)
10.4.1 Switch Logic
225(7)
10.4.1.1 Switching Unit Configuration
225(2)
10.5 Acousto-Optic Switches
227(1)
10.6 Micro-Electro-Mechanical Systems
228(2)
10.7 3D MEMS-Based Optical Switches
230(2)
10.8 Micro-Opto-Mechanical Systems
232(1)
10.9 Experimental Work
232(15)
10.9.1 A 1 x 2 Switch with One Laser Source
233(1)
10.9.2 Two 1 x 2 Switches with Two Laser Sources
234(1)
10.9.3 A 2 x 2 Switch Using a Movable Mirror
235(2)
10.9.4 A 1 x 2 Switch Using a Prism
237(1)
10.9.5 Technique and Apparatus
237(1)
10.9.6 Procedure
238(1)
10.9.7 Safety Procedure
238(1)
10.9.8 Apparatus Set-Up
238(8)
10.9.8.1 A 1 x 2 Switch with One Laser Source
238(2)
10.9.8.2 Two 1 x 2 Switches with Two Laser Sources
240(2)
10.9.8.3 A 2 x 2 Switch Using a Movable Mirror
242(2)
10.9.8.4 A 1 x 2 Switch Using a Prism
244(2)
10.9.9 Data Collection
246(1)
10.9.9.1 A 1 x 2 Switch with One Laser Source
246(1)
10.9.9.2 Two 1 x 2 Switches with Two Laser Sources
246(1)
10.9.9.3 A 2 x 2 Switch Using a Movable Mirror
246(1)
10.9.9.4 A 1 x 2 Switch Using a Prism
246(1)
10.9.10 Calculations and Analysis
246(1)
10.9.10.1 A 1 x 2 Switch with One Laser Source
246(1)
10.9.10.2 Two 1 x 2 Switches with Two Laser Sources
246(1)
10.9.10.3 A 2 x 2 Switch Using a Movable Mirror
246(1)
10.9.10.4 A 1 x 2 Switch Using a Prism
246(1)
10.9.11 Results and Discussions
247(1)
10.9.11.1 A 1 x 2 Switch with One Laser Source
247(1)
10.9.11.2 Two 1 x 2 Switches with Two Laser Sources
247(1)
10.9.11.3 A 2 x 2 Switch Using a Movable Mirror
247(1)
10.9.11.4 A 1 x 2 Switch Using a Prism
247(1)
10.9.12 Conclusion
247(1)
10.9.13 Suggestions for Future Lab Work
247(1)
10.10 List of References
247(1)
10.11 Appendix
247(1)
Further Reading
247(4)
Chapter 11 Laser Technology 251(56)
11.1 Introduction
251(1)
11.2 Light Emission
252(1)
11.3 Principle of the Laser
253(2)
11.4 Thermal Equilibrium and Population Inversion
255(2)
11.5 Transverse and Longitudinal Modes
257(1)
11.6 Gain
258(1)
11.7 Threshold Condition
259(1)
11.8 Power and Energy
260(1)
11.9 Three- and Four-Energy Level Laser Systems
261(2)
11.10 Types of Laser
263(11)
11.10.1 Gas Lasers
263(2)
11.10.1.1 Helium-Neon (He-Ne) Laser
263(1)
11.10.1.2 Argon Ion (Ar+) Laser
264(1)
11.10.1.3 Carbon Dioxide Gas Laser
265(1)
11.10.2 Solid State Lasers
265(4)
11.10.2.1 Ruby Laser
265(3)
11.10.2.2 Neodymium-YAG Laser
268(1)
11.10.2.3 Alexandrite Laser
269(1)
11.10.3 Dye Lasers
269(1)
11.10.4 Semiconductor Lasers
269(5)
11.10.4.1 Energy Bands
270(1)
11.10.4.2 Types of Semiconductor Lasers
271(1)
11.10.4.3 Heterojunction Laser Diodes
272(1)
11.10.4.4 Double Heterostructure Laser Diodes
273(1)
11.10.4.5 Quantum Well Lasers
273(1)
11.10.4.6 Separate Confinement Heterostructure Lasers
273(1)
11.10.4.7 Distributed Feedback Lasers
273(1)
11.10.4.8 Tunable Laser Diodes
273(1)
11.10.5 Other Types of Lasers
274(1)
11.11 Comparison of Semiconductor and Conventional Lasers
274(1)
11.12 Classification of Lasers
275(1)
11.13 Laser-Beam Alignment
275(6)
11.13.1 Alignment Using One, Two and Multi-Axis Positioners
276(1)
11.13.2 Alignment Using Two Mirror Mounts
276(2)
11.13.3 Alignment Using Three and Four Mirror Mounts
278(1)
11.13.4 Alignment Using a Risley Prism Pair
279(1)
11.13.5 Alignment Using an Adjustable Wedge
280(1)
11.14 Laser-Beam Expansion
281(5)
11.14.1 Characteristics of a Gaussian Beam
282(2)
11.14.2 The Rayleigh Range
284(1)
11.14.3 Expansion and Collimation of a Laser Beam
285(1)
11.15 Laser Applications
286(2)
11.16 Experimental Work
288(17)
11.16.1 Experiment One: Laser-Beam Alignment
288(1)
11.16.2 Experiment Two: Laser-Beam Expansion
288(1)
11.16.3 Technique and Apparatus
288(3)
11.16.4 Procedure
291(1)
11.16.5 Safety Procedure
291(1)
11.16.6 Apparatus Set-Up
291(11)
11.16.6.1 Experiment One: Laser-Beam Alignment
291(8)
11.16.6.2 Experiment Two: Laser-Beam Expansion
299(3)
11.16.7 Data Collection
302(1)
11.16.7.1 Experiment One: Laser-Beam Alignment
302(1)
11.16.7.2 Experiment Two: Laser-Beam Expansion
303(1)
11.16.8 Calculations and Analysis
303(1)
11.16.8.1 Experiment One: Laser-Beam Alignment
303(1)
11.16.8.2 Experiment Two: Laser-Beam Expansion
303(1)
11.16.9 Results and Discussions
304(1)
11.16.9.1 Experiment One: Laser-Beam Alignment
304(1)
11.16.9.2 Experiment Two: Laser-Beam Expansion
304(1)
11.16.10 Conclusion
304(1)
11.16.11 Suggestions for Future Lab Work
304(1)
11.17 List of References
305(1)
11.18 Appendix
305(1)
Further Reading
305(2)
Chapter 12 Optical-Fibre Communications 307(42)
12.1 Introduction
307(1)
12.2 The Evolution of Communication Systems
308(1)
12.3 Electromagnetic Spectrum Overview
308(2)
12.4 The Evolution of Fibre-Optic Systems
310(1)
12.4.1 The First Generation
310(1)
12.4.2 The Second Generation
311(1)
12.4.3 The Third Generation
311(1)
12.5 Undersea DWDM Cable Network (SEA-ME-WE-3)
311(1)
12.6 Basic Communication Systems
312(1)
12.7 Types of Topologies
313(3)
12.7.1 Bus Topology
313(1)
12.7.2 Ring Topology
314(1)
12.7.3 Star Topology
314(1)
12.7.4 Mesh Topology
314(1)
12.7.5 Tree Topology
314(2)
12.8 Types of Networks
316(5)
12.8.1 Home Area Networks
316(1)
12.8.2 Local Area Networks
316(1)
12.8.3 Campus Area Networks
316(1)
12.8.4 Metropolitan Area Networks
317(3)
12.8.5 Wide Area Networks
320(1)
12.9 Submarine Cables
321(1)
12.10 Open-System Interconnection
321(3)
12.10.1 Physical (Layer 1)
321(1)
12.10.2 Data Link (Layer 2)
321(1)
12.10.3 Network (Layer 3)
321(2)
12.10.4 Transport (Layer 4)
323(1)
12.10.5 Session (Layer 5)
324(1)
12.10.6 Presentation (Layer 6)
324(1)
12.10.7 Application (Layer 7)
324(1)
12.11 Performance of Passive Linear Optical Networks
324(2)
12.11.1 Power Budget Calculation
325(1)
12.11.2 Nearest-Distance Power Budget
325(1)
12.11.3 Largest-Distance Power Budget
326(1)
12.12 Performance of Star Optical Networks
326(1)
12.13 Transmission Links
327(4)
12.13.1 Analogue Signals
327(1)
12.13.2 Digital Signals
328(1)
12.13.3 Converting Analogue Signal to Digital Signal
329(1)
12.13.4 Bit Error Rate
330(1)
12.13.5 Fibre-Optic Telecommunication Equipment and Devices
331(1)
12.14 SONET/SDH
331(2)
12.14.1 Definition of SONET and SDH
331(1)
12.14.2 SONET/SDH Purposes and Features
332(1)
12.14.2.1 Multi-Vendor Networks
332(1)
12.14.2.2 Cost Reduction
332(1)
12.14.2.3 Survivability and Availability
333(1)
12.14.2.4 New High-Speed Services
333(1)
12.14.2.5 Bandwidth Management
333(1)
12.14.2.6 Network Management/Single-Ended Operations
333(1)
12.15 Multiplexing Terminology and Signalling Hierarchy
333(3)
12.15.1 Existing Multiplexing Terminology and Digital Signalling Hierarchy
333(1)
12.15.2 SONET Multiplexing Terminology and Optical Signalling Hierarchy
334(1)
12.15.3 SDH Multiplexing Terminology and Optical Signalling Hierarchy
335(1)
12.16 SONET and SDH Transmission Rates
336(1)
12.17 North American Optical and Digital Signal Designation
336(1)
12.18 SONET Systems
337(1)
12.18.1 Linear Systems
337(1)
12.18.2 Ring Systems
338(1)
12.19 STS-1 Frame Structure
338(3)
12.19.1 Serial Transmission
338(1)
12.19.2 Transport Overhead
339(1)
12.19.3 STS-1 SPE Path Overhead
340(1)
12.19.4 Multiplexing Method
341(1)
12.20 Metro and Long-Haul Optical Networks
341(1)
12.21 Network Configuration
342(5)
12.21.1 Automatic Protection Switching
342(1)
12.21.2 SONET/SDH Ring Configurations
342(3)
12.21.2.1 Two-Fibre Unidirectional Path Switched Ring Configuration
342(1)
12.21.2.2 Four-Fibre BLSR Configuration
343(2)
12.21.3 Generic SONET Network
345(1)
12.21.4 SONET Add/Drop Multiplexer
346(1)
12.21.5 Dense WDM Deployment
346(1)
Further Reading
347(2)
Chapter 13 Fibre-Optic Lighting 349(14)
13.1 Introduction
349(1)
13.2 Light
349(1)
13.3 Electrical Energy Consumption by Lighting
350(1)
13.4 Light Measurement
351(2)
13.4.1 Luminous Flux or Light Output
351(1)
13.4.2 Luminous Efficacy
351(1)
13.4.3 Luminous Flux Density of Lighting Level
352(1)
13.5 Electrical Lighting System
353(1)
13.6 Fibre-Optic Lighting System
354(1)
13.7 Advantages of Fibre-Optic Lighting
355(1)
13.8 Fibre-Optic Lighting Applications
356(1)
13.9 Experimental Work
357(4)
13.9.1 Technique and Apparatus
357(1)
13.9.2 Procedure
358(1)
13.9.3 Safety Procedure
358(1)
13.9.4 Apparatus Set-Up
358(2)
13.9.4.1 Fibre-Optic Lighting with Diffuser
358(1)
13.9.4.2 Fibre-Optic Lighting with Lens and Diffuser
359(1)
13.9.4.3 Fibre-Optic Lighting with Lenses and Diffuser
359(1)
13.9.5 Data Collection
360(1)
13.9.5.1 Fibre-Optic Lighting with Diffuser
360(1)
13.9.5.2 Fibre-Optic Lighting with Lens and Diffuser
360(1)
13.9.5.3 Fibre-Optic Lighting with Lenses and Diffuser
360(1)
13.9.6 Calculations and Analysis
360(1)
13.9.6.1 Fibre-Optic Lighting with Diffuser
360(1)
13.9.6.2 Fibre-Optic Lighting with Lens and Diffuser
360(1)
13.9.6.3 Fibre-Optic Lighting with Lenses and Diffuser
360(1)
13.9.7 Results and Discussions
361(1)
13.9.7.1 Fibre-Optic Lighting with Diffuser
361(1)
13.9.7.2 Fibre-Optic Lighting with Lens and Diffuser
361(1)
13.9.7.3 Fibre-Optic Lighting with Lenses and Diffuser
361(1)
13.9.8 Conclusion
361(1)
13.9.9 Suggestions for Future Lab Work
361(1)
13.10 List of References
361(1)
13.11 Appendix
361(1)
Further Reading
361(2)
Chapter 14 Fibre-Optic Testing 363(24)
14.1 Introduction
363(1)
14.2 Testing Photonics Components
363(1)
14.3 Optical-Power Measurements (Intensity)
364(4)
14.3.1 Optical-Power Measurement Units
364(1)
14.3.2 Optical-Power Loss Measurements
365(3)
14.3.2.1 Insertion Loss
365(1)
14.3.2.2 Crosstalk
365(1)
14.3.2.3 Polarisation-Dependent Loss
366(1)
14.3.2.4 Return Loss or Back Reflection
366(1)
14.3.2.5 Temperature-Dependent Loss
367(1)
14.3.2.6 Wavelength-Dependent Loss
367(1)
14.3.2.7 Chromatic Dispersion
367(1)
14.4 Optical-Frequency Measurements
368(1)
14.5 Testing Optical Fibre Switches
368(3)
14.5.1 Mechanical Tests
369(1)
14.5.2 Environmental Tests
369(1)
14.5.3 Repeatability Test
370(1)
14.5.4 Speed Test
370(1)
14.6 Light Wavelength Measurements
371(1)
14.7 Device Power Handling Tests
371(1)
14.8 Troubleshooting
372(1)
14.9 Sources of Error during Fibre-Optic Measurements
372(2)
14.9.1 Resolution
372(1)
14.9.2 Accuracy
372(1)
14.9.3 Stability (Drift)
373(1)
14.9.4 Linearity
373(1)
14.9.5 Repeatability Error
373(1)
14.9.6 Reproducibility
373(1)
14.10 Experimental Work
374(10)
14.10.1 Testing a Fibre-Optic Device Using an Optical Spectrum Analyser
374(1)
14.10.2 Testing Mechanical Properties of Fibre-Optic Devices
375(1)
14.10.3 Testing a Fibre-Optic Cable Using an Optical Spectrum Analyser
375(1)
14.10.4 Technique and Apparatus
376(1)
14.10.5 Procedure
376(1)
14.10.6 Safety Procedure
376(1)
14.10.7 Apparatus Set-Up
376(6)
14.10.7.1 Testing a Fibre-Optic Device Using an Optical Spectrum Analyser
376(4)
14.10.7.2 Testing Mechanical Properties of Fibre-Optic Devices
380(1)
14.10.7.3 Testing a Fibre-Optic Cable Using an Optical Spectrum Analyser
381(1)
14.10.8 Data Collection
382(1)
14.10.8.1 Testing a Fibre-Optic Device Using an Optical Spectrum Analyser
382(1)
14.10.8.2 Testing Mechanical Properties of Fibre-Optic Devices
382(1)
14.10.8.3 Testing a Fibre-Optic Cable Using an Optical Spectrum Analyser
382(1)
14.10.9 Calculations and Analysis
383(1)
14.10.9.1 Testing a Fibre-Optic Device Using an Optical Spectrum Analyser
383(1)
14.10.9.2 Testing Mechanical Properties of Fibre-Optic Devices
383(1)
14.10.9.3 Testing a Fibre-Optic Cable Using an Optical Spectrum Analyser
383(1)
14.10.10 Results and Discussion
383(1)
14.10.10.1 Testing a Fibre-Optic Device Using an Optical Spectrum Analyser
383(1)
14.10.10.2 Testing Mechanical Testing Properties of Fibre-Optic Devices
383(1)
14.10.10.3 Testing a Fibre-Optic Cable Using an Optical Spectrum Analyser
383(1)
14.10.11 Conclusion
383(1)
14.10.12 Suggestions for Future Lab Work
384(1)
14.11 List of References
384(1)
14.12 Appendix
384(1)
Further Reading
384(3)
Chapter 15 Photonics Laboratory Safety and Safety Ethics 387(20)
15.1 Introduction
387(1)
15.2 Electrical Safety
387(6)
15.2.1 Fuses/Circuit Breakers
388(1)
15.2.2 Switches ON/OFF
389(1)
15.2.3 Plugs
390(1)
15.2.4 Wall Outlets
391(1)
15.2.5 Cords
392(1)
15.2.6 Ground Fault Circuit Interrupters
392(1)
15.3 Light Sources
393(1)
15.4 Devices and Equipment
394(1)
15.5 Audio-Visual and Computer Peripherals
394(1)
15.6 Handling of Fibre-Optic Cables
395(1)
15.7 Epoxy Adhesives and Sealants
395(1)
15.8 Cleaning Optical Components
396(1)
15.9 Optic/Optical Fibre Devices and Systems
397(1)
15.10 Cleaning Chemicals
397(1)
15.11 Warning Labels
397(1)
15.12 Laser Safety
397(3)
15.13 Laser Safety Tips
400(1)
15.14 Indoor Air Quality
401(1)
15.15 Other Considerations
402(2)
15.16 Safety Ethics in Schools
404(1)
15.16.1 Laws and Regulations
404(1)
15.16.2 Managements and Ethics
404(1)
15.16.3 Occupational Safety and Health Administration
404(1)
15.17 Society, Family and Person Safety Ethics
405(1)
Further Reading
405(2)
Appendix A: Details of the Devices, Components, Tools and Parts 407(18)
Appendix B: International System of Units (SI) 425(4)
Glossary 429(8)
Index 437
Abdul Al-Azzawi, PhD, has worked in the photonics manufacturing industry, research (NRC/Canmet), and teaching atAlgonquin College, Ontario, Canada. While employed at NRC, he participated in studying energysaving in a residential building and developing the green building assessment programme. As aphotonics engineer, he designed new production lines, modified products, developed manufacturingprocess, and designed new jigs. At Algonquin College, he has taught mechanical and photonics courses in the mechanical and photonics engineering programmes. He was a member of the founding team of the Photonics Engineering Programmes.