List of Symbols |
|
xiii | |
Preface |
|
xv | |
1 Leonardo Fibonacci |
|
1 | (4) |
2 Fibonacci Numbers |
|
5 | (16) |
|
|
5 | (1) |
|
|
6 | (4) |
|
2.3 Fibonacci and Lucas Curiosities |
|
|
10 | (11) |
3 Fibonacci Numbers in Nature |
|
21 | (34) |
|
3.1 Fibonacci, Flowers, and Trees |
|
|
22 | (8) |
|
3.2 Fibonacci and Male Bees |
|
|
30 | (2) |
|
3.3 Fibonacci, Lucas, and Subsets |
|
|
32 | (1) |
|
3.4 Fibonacci and Sewage Treatment |
|
|
33 | (2) |
|
|
35 | (2) |
|
3.6 Fibonacci and Reflections |
|
|
37 | (2) |
|
3.7 Paraffins and Cycloparaffins |
|
|
39 | (3) |
|
|
42 | (2) |
|
|
44 | (1) |
|
3.10 Fibonacci and Neurophysiology |
|
|
45 | (1) |
|
|
46 | (9) |
4 Additional Fibonacci and Lucas Occurrences |
|
55 | (26) |
|
4.1 Fibonacci Occurrences |
|
|
55 | (6) |
|
4.2 Fibonacci and Compositions |
|
|
61 | (3) |
|
4.3 Fibonacci and Permutations |
|
|
64 | (2) |
|
4.4 Fibonacci and Generating Sets |
|
|
66 | (1) |
|
4.5 Fibonacci and Graph Theory |
|
|
67 | (2) |
|
|
69 | (2) |
|
|
71 | (3) |
|
|
74 | (2) |
|
4.9 Fibonacci and the Stock Market |
|
|
76 | (5) |
5 Fibonacci and Lucas Identities |
|
81 | (40) |
|
5.1 Spanning Tree of a Connected Graph |
|
|
84 | (4) |
|
|
88 | (9) |
|
5.3 Cyclic Permutations and Lucas Numbers |
|
|
97 | (3) |
|
5.4 Compositions Revisited |
|
|
100 | (1) |
|
5.5 Number of Digits in Fn and Ln |
|
|
101 | (1) |
|
5.6 Theorem 5.8 Revisited |
|
|
102 | (4) |
|
|
106 | (2) |
|
5.8 Additional Fibonacci and Lucas Identities |
|
|
108 | (5) |
|
|
113 | (2) |
|
|
115 | (6) |
6 Geometric Illustrations and Paradoxes |
|
121 | (16) |
|
6.1 Geometric Illustrations |
|
|
121 | (5) |
|
|
126 | (1) |
|
6.3 Fibonacci Tessellations |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
129 | (1) |
|
6.6 Cassini-Based Paradoxes |
|
|
129 | (5) |
|
|
134 | (3) |
7 Gibonacci Numbers |
|
137 | (10) |
|
|
137 | (6) |
|
|
143 | (4) |
8 Additional Fibonacci and Lucas Formulas |
|
147 | (14) |
|
8.1 New Explicit Formulas |
|
|
147 | (3) |
|
|
150 | (11) |
9 The Euclidean Algorithm |
|
161 | (10) |
|
9.1 The Euclidean Algorithm |
|
|
163 | (2) |
|
9.2 Formula (5.5) Revisited |
|
|
165 | (2) |
|
|
167 | (4) |
10 Divisibility Properties |
|
171 | (18) |
|
10.1 Fibonacci Divisibility |
|
|
171 | (6) |
|
|
177 | (1) |
|
10.3 Fibonacci and Lucas Ratios |
|
|
177 | (5) |
|
10.4 An Altered Fibonacci Sequence |
|
|
182 | (7) |
11 Pascal's Triangle |
|
189 | (16) |
|
11.1 Binomial Coefficients |
|
|
189 | (2) |
|
|
191 | (1) |
|
11.3 Fibonacci Numbers and Pascal's Triangle |
|
|
192 | (4) |
|
11.4 Another Explicit Formula for Ln |
|
|
196 | (1) |
|
|
197 | (1) |
|
11.6 Additional Identities |
|
|
198 | (2) |
|
11.7 Fibonacci Paths of a Rook on a Chessboard |
|
|
200 | (5) |
12 Pascal-like Triangles |
|
205 | (22) |
|
|
205 | (3) |
|
12.2 An Alternate Formula for Ln |
|
|
208 | (1) |
|
12.3 Differences of Like-Powers |
|
|
209 | (2) |
|
12.4 Catalan's Formula Revisited |
|
|
211 | (1) |
|
|
212 | (5) |
|
12.6 Powers of Lucas Numbers |
|
|
217 | (1) |
|
12.7 Variants of Pascal's Triangle |
|
|
218 | (9) |
13 Recurrences and Generating Functions |
|
227 | (30) |
|
|
227 | (4) |
|
13.2 Generating Functions |
|
|
231 | (11) |
|
13.3 A Generating Function for F3n |
|
|
242 | (1) |
|
13.4 A Generating Function for F3n |
|
|
243 | (1) |
|
13.5 Summation Formula (5.1) Revisited |
|
|
243 | (1) |
|
13.6 A List of Generating Functions |
|
|
244 | (3) |
|
13.7 Compositions Revisited |
|
|
247 | (1) |
|
13.8 Exponential Generating Functions |
|
|
248 | (2) |
|
|
250 | (1) |
|
13.10 Identities Using the Differential Operator |
|
|
251 | (6) |
14 Combinatorial Models I |
|
257 | (24) |
|
14.1 A Fibonacci Tiling Model |
|
|
258 | (5) |
|
14.2 A Circular Tiling Model |
|
|
263 | (5) |
|
14.3 Path Graphs Revisited |
|
|
268 | (3) |
|
14.4 Cycle Graphs Revisited |
|
|
271 | (2) |
|
|
273 | (8) |
15 Hosoya's Triangle |
|
281 | (8) |
|
15.1 Recursive Definition |
|
|
282 | (1) |
|
|
283 | (6) |
16 The Golden Ratio |
|
289 | (34) |
|
16.1 Ratios of Consecutive Fibonacci Numbers |
|
|
289 | (2) |
|
|
291 | (5) |
|
16.3 Golden Ratio as Nested Radicals |
|
|
296 | (1) |
|
16.4 Newton's Approximation Method |
|
|
297 | (2) |
|
16.5 The Ubiquitous Golden Ratio |
|
|
299 | (1) |
|
16.6 Human Body and the Golden Ratio |
|
|
300 | (2) |
|
16.7 Violin and the Golden Ratio |
|
|
302 | (1) |
|
16.8 Ancient Floor Mosaics and the Golden Ratio |
|
|
302 | (1) |
|
16.9 Golden Ratio in an Electrical Network |
|
|
303 | (1) |
|
16.10 Golden Ratio in Electrostatics |
|
|
304 | (1) |
|
16.11 Golden Ratio by Origami |
|
|
305 | (5) |
|
16.12 Differential Equations |
|
|
310 | (3) |
|
16.13 Golden Ratio in Algebra |
|
|
313 | (1) |
|
16.14 Golden Ratio in Geometry |
|
|
313 | (10) |
17 Golden Triangles and Rectangles |
|
323 | (28) |
|
|
323 | (5) |
|
|
328 | (4) |
|
|
332 | (3) |
|
17.4 Human Body and the Golden Rectangle |
|
|
335 | (2) |
|
17.5 Golden Rectangle and the Clock |
|
|
337 | (2) |
|
17.6 Straightedge and Compass Construction |
|
|
339 | (1) |
|
17.7 Reciprocal of a Rectangle |
|
|
340 | (1) |
|
|
341 | (3) |
|
17.9 Golden Rectangle Revisited |
|
|
344 | (1) |
|
17.10 Supergolden Rectangle |
|
|
345 | (6) |
18 Figeometry |
|
351 | (34) |
|
18.1 The Golden Ratio and Plane Geometry |
|
|
351 | (7) |
|
18.2 The Cross of Lorraine |
|
|
358 | (2) |
|
18.3 Fibonacci Meets Apollonius |
|
|
360 | (1) |
|
|
361 | (1) |
|
|
362 | (5) |
|
18.6 Trigonometric Formulas for Fn |
|
|
367 | (4) |
|
|
371 | (1) |
|
18.8 Fifth Roots of Unity |
|
|
372 | (3) |
|
|
375 | (1) |
|
18.10 Regular Icosahedron and Dodecahedron |
|
|
376 | (2) |
|
|
378 | (2) |
|
|
380 | (5) |
19 Continued Fractions |
|
385 | (10) |
|
19.1 Finite Continued Fractions |
|
|
385 | (3) |
|
19.2 Convergents of a Continued Fraction |
|
|
388 | (2) |
|
19.3 Infinite Continued Fractions |
|
|
390 | (3) |
|
19.4 A Nonlinear Diophantine Equation |
|
|
393 | (2) |
20 Fibonacci Matrices |
|
395 | (36) |
|
|
395 | (8) |
|
|
403 | (5) |
|
20.3 Fibonacci and Lucas Vectors |
|
|
408 | (3) |
|
20.4 An Intriguing Fibonacci Matrix |
|
|
411 | (5) |
|
20.5 An Infinite-Dimensional Lucas Matrix |
|
|
416 | (6) |
|
20.6 An Infinite-Dimensional Gibonacci Matrix |
|
|
422 | (1) |
|
|
423 | (8) |
21 Graph-theoretic Models I |
|
431 | (12) |
|
21.1 A Graph-theoretic Model for Fibonacci Numbers |
|
|
431 | (2) |
|
21.2 Byproducts of the Combinatorial Models |
|
|
433 | (6) |
|
|
439 | (4) |
22 Fibonacci Determinants |
|
443 | (18) |
|
22.1 An Application to Graph Theory |
|
|
443 | (5) |
|
22.2 The Singularity of Fibonacci Matrices |
|
|
448 | (3) |
|
22.3 Fibonacci and Analytic Geometry |
|
|
451 | (10) |
23 Fibonacci and Lucas Congruences |
|
461 | (24) |
|
23.1 Fibonacci Numbers Ending in Zero |
|
|
461 | (1) |
|
23.2 Lucas Numbers Ending in Zero |
|
|
462 | (1) |
|
23.3 Additional Congruences |
|
|
462 | (1) |
|
|
463 | (1) |
|
|
464 | (2) |
|
23.6 A Generalized Fibonacci Congruence |
|
|
466 | (7) |
|
23.7 Fibonacci and Lucas Periodicities |
|
|
473 | (1) |
|
23.8 Lucas Squares Revisited |
|
|
474 | (2) |
|
23.9 Periodicities Modulo 10n |
|
|
476 | (9) |
24 Fibonacci and Lucas Series |
|
485 | (22) |
|
|
485 | (2) |
|
|
487 | (1) |
|
24.3 Fibonacci and Lucas Series Revisited |
|
|
488 | (3) |
|
24.4 A Fibonacci Power Series |
|
|
491 | (6) |
|
|
497 | (2) |
|
24.6 Additional Fibonacci Series |
|
|
499 | (8) |
25 Weighted Fibonacci and Lucas Sums |
|
507 | (16) |
|
|
507 | (7) |
|
25.2 Gauthier's Differential Method |
|
|
514 | (9) |
26 Fibonometry I |
|
523 | (16) |
|
26.1 Golden Ratio and Inverse Trigonometric Functions |
|
|
524 | (1) |
|
26.2 Golden Triangle Revisited |
|
|
525 | (1) |
|
|
526 | (1) |
|
26.4 Additional Fibonometric Bridges |
|
|
527 | (7) |
|
26.5 Fibonacci and Lucas Factorizations |
|
|
534 | (5) |
27 Completeness Theorems |
|
539 | (4) |
|
27.1 Completeness Theorem |
|
|
539 | (1) |
|
27.2 Egyptian Algorithm for Multiplication |
|
|
540 | (3) |
28 The Knapsack Problem |
|
543 | (4) |
|
28.1 The Knapsack Problem |
|
|
543 | (4) |
29 Fibonacci and Lucas Subscripts |
|
547 | (8) |
|
29.1 Fibonacci and Lucas Subscripts |
|
|
547 | (3) |
|
29.2 Gibonacci Subscripts |
|
|
550 | (1) |
|
29.3 A Recursive Definition of Yn |
|
|
551 | (4) |
30 Fibonacci and the Complex Plane |
|
555 | (12) |
|
|
556 | (1) |
|
30.2 Gaussian Fibonacci and Lucas Numbers |
|
|
556 | (5) |
|
|
561 | (6) |
Appendix |
|
|
|
567 | (18) |
|
A.2 The First 100 Fibonacci and Lucas Numbers |
|
|
585 | (4) |
|
A.3 The First 100 Fibonacci Numbers and Their Prime Factorizations |
|
|
589 | (4) |
|
A.4 The First 100 Lucas Numbers and Their Prime Factorizations |
|
|
593 | (4) |
Abbreviations |
|
597 | (2) |
References |
|
599 | (20) |
Solutions to Odd-Numbered Exercises |
|
619 | (50) |
Index |
|
669 | |