Atjaunināt sīkdatņu piekrišanu

Fibre Optic Communication Devices 2001 ed. [Hardback]

Edited by , Edited by
  • Formāts: Hardback, 465 pages, height x width: 235x155 mm, weight: 1910 g, XXI, 465 p., 1 Hardback
  • Sērija : Springer Series in Photonics 4
  • Izdošanas datums: 26-Jan-2001
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540669779
  • ISBN-13: 9783540669777
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 465 pages, height x width: 235x155 mm, weight: 1910 g, XXI, 465 p., 1 Hardback
  • Sērija : Springer Series in Photonics 4
  • Izdošanas datums: 26-Jan-2001
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540669779
  • ISBN-13: 9783540669777
Modern communication technologies have revolutionized society and econ­ omy on a global scale, and progress in this field is still breathtaking. Among the crucial features of these developments is the possibility to transmit/receive ever-increasing bit rates at lower and lower cost. This is due to some ex­ tent to improved electronics, but it is much more due to the capabilities of opticaL fibre-based communication systems. Optical communication tech­ nologies were initially introduced in order to improve traditional information exchange, but they have recently become a key prerequisite for the tremen­ dous growth in internet traffic, and optical technologies will be even more important in enabling and supporting the future expansion of internet traffic with annual growth rates forecast at 100%-200%. It is the purpose of the present book to describe the enabling components of optical communication systems, in particular their fundamentals, principles and current status, as well as the potential for future developments. Following such a scheme, it is the editors' hope that this book will not only attract the attention of experts already working in the field, but be, at least, likewise directed to interested newcomers. The book is organized into eleven chapters addressing the essential optical and optoelectronic components which form the hardware basis of today's, and most likely of future, optical networks.

Recenzijas

From the reviews of the first edition:









"Devices for use in optical communication systems have experienced a massive increase in attention over the past few years. The book is well presented, readable and adequately up-to-date, with the most recent references in the late 1990s, and at least mentions of most of the hot topics that are currently exciting us. The very extensive list of references enhances the value of the book in that role, and for this reason alone it should find a place on many bookshelves." (Peter R. Selway, Measurement Science and Technology, Vol. 12 (9), 2002)

Papildus informācija

Springer Book Archives
Characteristics of Optical Communication Networks 1(20) Sonny Johansson Erland Almstrom Optical Network Issues 1(2) Long-Haul Networks 3(1) WDM Networking 4(2) Connection Patterns 6(2) Optical Network Protection 8(4) Protection Schemes 8(2) Ring Protection 10(2) Optical Network Elements 12(9) Optical WDM Terminal Multiplexer 12(2) Optical WDM Add/Drop Multiplexers 14(2) Optical WDM Cross-Connects 16(2) References 18(3) The Optical Fibre 21(50) Real Vallee Introduction 21(1) Waveguiding Properties 22(17) Basic Concepts and Parameters 22(5) Basic Equations for the Step-Index Fibre 27(10) Graded-Index Fibres 37(2) Fibre Materials 39(2) Silicate Glasses 39(1) Plastics 40(1) Basic Optical Properties 41(9) Losses 41(3) Dispersion 44(4) Polarisation 48(2) Nonlinear Optical Properties 50(13) Stimulated Scattering Processes 51(6) Third-Order Nonlinear Parametric Processes 57(3) Photosensitivity 60(3) Pulse Propagation in Optical Fibres 63(8) Derivation of the Wave Equation for the Pulse Envelope 63(2) Solution of the Envelope Wave Equation: The Soliton 65(2) References 67(4) Transmitters 71(46) Herbert Burkhard Stefan Hansmann Introduction 71(1) Theory 72(19) Rate Equations for Single-Mode Operation 72(4) Material Properties 76(7) Steady-State Characteristics 83(2) Small-Signal Modulation Characteristics 85(4) Noise Properties 89(2) Basic Design of Semiconductor Laser Structures 91(3) Concepts of Lateral Confinement 91(3) Single-Mode Laser Structures 94(16) Coupled-Mode Theory 96(2) Basic Properties of Index-Coupled DFB Lasers 98(4) Advanced DFB Laser Structures 102(1) Gain-Coupled Lasers 103(1) Modelling of DFB Lasers 103(7) Tunable Lasers 110(7) External Cavity Laser (ECL) 110(1) Thermal Tuning 110(1) Multisection DFB Laser 111(1) DBR Laser 111(1) Tunable Twin-Guide Laser (TTG) 111(1) Codirectionally Coupled Lasers (CCL) 112(1) Y-Laser 113(1) Superstructure Grating DBR Laser or Sampled Grating Laser (SSG-Laser) 113(1) Bent-Waveguide DFB Laser (BWL) 114(1) References 114(3) Optical Photodetectors 117(34) Andre Scavennec Louis Giraudet Introduction 117(1) The PIN Photodiode 117(14) PIN Photodiode Operation 117(3) PIN Photodiode Characteristics 120(7) Edge-Illuminated PIN Photodiodes 127(2) Metal-Semiconductor-Metal Photodiodes 129(2) The Avalanche Photodiode (APD) 131(5) Characteristics of APDs 132(1) APD Noise 133(1) Structures for Improved Noise Characteristics 134(2) Photodiodes 136(5) Silicon Photodiodes 136(1) InGaAs Photodiodes 137(4) Photoreceivers 141(6) Conventional Photoreceivers 141(3) Specific Photoreceivers 144(1) OEIC Photoreceivers 144(3) Conclusion 147(4) References 148(3) Optical Amplifiers 151(46) Mikhail N. Zervas Gerlas van den Hoven Optical Fibre Amplifiers 152(21) Erbium-Doped Fibre Amplifiers 152(20) Other Fibre Amplifiers 172(1) Semiconductor Optical Amplifiers 173(24) Optical Gain in Compound Semiconductor Materials 173(2) Basic Heterojunction Device Structure 175(2) Rate Equations, Saturation Behaviour, Noise Figure 177(4) Effect of Optical Reflections (Gain Ripple) 181(2) Gain-Clamping 183(1) General Applications of Semiconductor Optical Amplifiers in Communication Systems 184(1) Digital Transmission Systems 185(3) WDM Systems 188(1) Analogue Transmission Systems 189(1) Other Applications 189(2) References 191(6) Passive and Active Glass Integrated Optics Devices 197(65) Antoine Kevorkian General Introduction 197(2) Passive Power Splitters 199(25) Splitters and Their Basic Functions 199(2) Computing Waveguide Modes 201(7) Tapers and Branches 208(1) Bends 209(2) 2 x 2 Splitters 211(2) P x N Star Couplers 213(1) Ion Exchange in Glass 213(4) Characterization Methods 217(5) Performance and Reliability of Commercial Devices 222(2) Integrated Optic Yb/Er Glass Amplifiers 224(27) Introduction 224(2) Rate Equations for Yb/Er Co-doping 226(2) Propagation Equations 228(1) The Power-Transfer Equation 229(3) Yb/Er Co-doping Enhances the Inversion 232(2) Effective Inversion Coefficients 234(2) Gain of a Co-doped Waveguide Section 236(3) Adverse Effects of High Rare-Earth Concentration 239(5) Technologies and Devices 244(7) Integrated Optic Er/Yb Laser Oscillators 251(11) Continuous Wave (CW) Operation 251(5) Experimental Soliton and Q-Switch Operation 256(2) References 258(4) Wavelength-Selective Devices 262(51) Meint K. Smit Ton Koonen Harald Herrmann Wolfgang Sohler Introduction 262(3) Device Specifications 265(1) Fabry-Perot Interferometer Filters 266(5) Dielectric Interference Filters 271(2) Fibre Gratings 273(2) Grating-based Demultiplexers 275(6) PHASAR-based Devices 281(15) Introduction 281(1) Principle of Operation 282(1) Technologies 283(1) Device Characteristics 284(6) Wavelength Routeing Properties 290(1) Multiwavelength Transmitters and Receivers 291(1) Multiwavelength Add-Drop Multiplexers and Crossconnects 292(4) Integrated Acousto-Optical Devices in LiNbO3 296(17) Introduction 296(1) Basic Building Blocks 297(4) Tunable Wavelength Filters 301(2) Wavelength-selective Switches and Add-Drop Multiplexers 303(3) Applications in WDM Systems 306(1) Outlook 307(1) References 308(5) Optical Switching 313(25) R. Ian MacDonald Ken Garrett Philip Garel-Jones Winfried H.G. Horsthuis Edmond J. Murphy Introduction 313(1) Applications 313(9) Optical Component Characterization and Testing 313(3) Test Access 316(1) Telecommunications 317(5) Technologies 322(14) Non-interferometric Switches 323(9) Interferometric Switches 332(4) Summary 336(2) References 336(2) All-Optical Time-Division Multiplexing Technology 338(38) Masatoshi Saruwatari Role of All-Optical TDM Technology 338(1) Key Technologies for All-Optical TDM Systems 339(24) Ultrashort Optical Pulse Generation Technology 339(7) All-Optical MUX/DEMUX Technology 346(11) Optical Timing Extraction Technology 357(3) High-Speed Optical Waveform Measurement 360(3) Demonstration of OTDM and OTDM/WDM Transmission 363(13) 100-400 Gbit/s OTDM Transmission Experiment 363(4) 400 Gbit/s to 3 Tbit/s OTDM/WDM Transmission Experiments 367(2) References 369(7) Optical Hybrid Integrated Circuits 376(38) Yasufumi Yamada Yuji Akahori Hiroshi Terui Introduction 376(2) Key Technologies for Hybrid Integration 378(11) Platform for Hybrid Integration 378(3) Passive Alignment Technique 381(5) OE-device for Hybrid Integration 386(3) Contributions of Hybrid Integration to Optical Communication Technology 389(19) Application of Hybrid-Integration Technology 389(1) Optical Module for Fibre-optic Subscriber System 390(6) Optical Module for WDM Applications 396(5) Optoelectronic Hybrid Modules for High-speed Applications 401(7) Future Prospects 408(2) Summary 410(4) References 411(3) Monolithic Integration 414(35) Herbert Venghaus Heinz-Gunter Bach Frank Fidorra Helmut Heidrich Ronald Kaiser Carl Michael Weinert Introductory Remarks 414(2) Waveguides 416(2) Integrated Spot-Size Converters 418(2) Monolithic Laser Integration 420(7) Vertical Laser-Waveguide Coupling 421(1) Laser-Waveguide Butt Coupling 422(4) Laser-HBT Integration 426(1) Integrated Receiver 427(5) Crosstalk 432(3) Electrical Crosstalk 432(2) Optical Crosstalk 434(1) Thermal Crosstalk 435(1) Current Status of Optoelectronic Integration 435(6) Outlook 441(8) References 442(7) Biographical Notes 449(8) Index 457