Atjaunināt sīkdatņu piekrišanu

E-grāmata: Field Theory of Multiscale Plasticity

(Kobe University, Japan)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 04-Jan-2024
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781108875202
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 220,09 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 04-Jan-2024
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781108875202
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This unique book provides a concise and systematic treatment of foundational material on dislocations and metallurgy and an up-to-date discussion of multiscale modeling of materials, which ultimately leads to the field theory of multiscale plasticity (FTMP). Unlike conventional continuum models, this approach addresses the evolving inhomogeneities induced by deformation, typically as dislocation substructures like dislocation cells, as well as their interplay at more than one scale. This is an impressively visual text with many and varied examples and viewgraphs. In particular, the book presents a feasible constitutive model applicable to crystal plasticity-based finite element method (FEM) simulations. It will be an invaluable resource, accessible to undergraduate and graduate students as well as researchers in mechanical engineering, solid mechanics, applied physics, mathematics, materials science, and technology.

Papildus informācija

Covers foundations of dislocations and metallurgy, with up-to-date discussion of multiscale modeling, including the field theory of multiscale plasticity.
Part I. Fundamentals:
1. Dislocation theory and metallurgy;
2. Dislocation dynamics and constitutive framework;
3. Dislocation substructures: universality of cell structures;
4. Single crystals vs. polycrystals; Part II. Theoretical Backgrounds: Description and Evolution:
5. Overview of field theory of multiscale plasticity;
6. Differential geometrical field theory of dislocations and defects;
7. Gauge field theory of dislocations and defects;
8. Method of quantum field theory; Part III. Applications I: Evolution of Inhomogeneity in Three Scales:
9. Identification of important scales;
10. Scale A: modeling and simulations for dislocation substructures;
11. Scale B: intra-granular inhomogeneity;
12. Scale C: modeling and simulation for polycrystalline aggregate; Part IV. Applications II: Stability and Cooperation:
13. Cooperation of multiple inhomogeneous fields;
14. Outlooks: some perspectives on new multiscale solid mechanics;
15. Flow-evolutionary law as a working hypothesis; References; Author index; Subject index.
Tadashi Hasebe is Associate Professor of Mechanical Engineering at Kobe University, Japan and is an expert in a very wide range of engineering fields. More specifically, in metallic materials, including high-temperature strength, impact engineering, plastic forming technology, high-energy rate forming, theory of elasto-plasticity, and micromechanics. Professor Hasebe likes to incorporate experimental, mathematical, and numerical perspectives in his works.