Atjaunināt sīkdatņu piekrišanu

Figuring Fibers [Hardback]

  • Formāts: Hardback, 232 pages, height x width: 229x203 mm, weight: 807 g
  • Izdošanas datums: 30-Nov-2018
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470429314
  • ISBN-13: 9781470429317
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 46,91 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 232 pages, height x width: 229x203 mm, weight: 807 g
  • Izdošanas datums: 30-Nov-2018
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470429314
  • ISBN-13: 9781470429317
Citas grāmatas par šo tēmu:
Based on presentations at the American Mathematical Society Special Session in Mathematics and Mathematics Education in Fiber Arts, held in January 2014 in Baltimore, Maryland, the eight chapters in this book bring together mathematicians to explain a specific mathematical idea or set of ideas and their application in a fiber-art setting. They relate to the use of math to solve fiber-arts problems, designing and fabricating a fiber-arts piece to display a mathematical concept, proving that a specific fiber art can be used to exemplify a math concept, and mathematically analyzing an aspect of a specific fiber art. They include knitting, crocheting, quilting, and fabric models. Each chapter provides overviews of the mathematics and needlework and concludes with a project illustrating the math. Annotation ©2019 Ringgold, Inc., Portland, OR (protoview.com)
Acknowledgements xi
A Reader's Guide xiii
Introduction 1(6)
1 Welcome
1(1)
2 Mathematical Fiber Arts
1(2)
3 How to Use and Appreciate this Book
3(1)
Bibliography
4(3)
1 More Granny, Less Square
7(24)
1 Introduction
7(1)
2 Identification of L∞-Buffers and their Foundations
8(6)
3 Crochet Techniques for Building ∞-buffers
14(4)
4 Instructions and Design Ideas for Tetrominoes and Pentominoes
18(11)
Bibliography
29(2)
2 Gosper-like Fractals and Intermeshed Crochet
31(28)
1 Introduction
31(3)
2 Mathematical Work
34(6)
3 The Needlework
40(15)
4 Closing Thoughts
55(1)
Bibliography
56(3)
3 Templeton Square Truchet Tiles
59(24)
1 Introduction
59(5)
2 Mathematical Work
64(9)
3 The Needlework
73(6)
Bibliography
79(4)
4 Variations on Snake Trail Quilting Patterns
83(18)
1 Introduction
83(1)
2 Snake's Trail Quilt Blocks
83(2)
3 Snake's Trail Pattern Types
85(8)
4 The Needlework
93(6)
Bibliography
99(2)
5 The Chinese Remainder Theorem and Knitting Stitch Patterns
101(18)
1 Introduction
101(3)
2 Mathematical Work
104(4)
3 Rescaling for Different Gauges
108(5)
4 The Needlework
113(4)
Bibliography
117(2)
6 Knitting Torus Knots and Links
119(20)
1 Introduction
119(4)
2 Techniques for Knitting Torus Knots
123(4)
3 Which Torus Knots Can We Knit (in This Way)?
127(2)
4 Techniques for Knitting Torus Links
129(1)
5 Patterns for Knitting Torus Knots and Links
130(5)
6 Conclusion
135(1)
Bibliography
136(3)
7 Triply Periodic Polyhedra in Euclidean Three-Dimensional Space
139(36)
1 Introduction
139(2)
2 Mathematical Work
141(11)
3 The Needlework
152(12)
4 A Hands-on Model To Try Yourself
164(7)
5 Resources for Future Work
171(1)
Bibliography
171(4)
8 Piecing Together Link Complements
175(52)
1 Introduction
175(2)
2 Hyperbolic Structures on Link Complements
177(18)
3 The Quilts
195(20)
4 The Borromean Rings are Hyperbolic: Proof by Quilt
215(9)
Bibliography
224(3)
About the Contributors 227(2)
Credits 229(2)
Index 231
Carolyn Yackel, Mercer University, Macon, GA.

Sarah-Marie Belcastro, MathILy, Mathematical Staircase, Inc., Holyoke, MA and Smith College, Northampton, MA.