Atjaunināt sīkdatņu piekrišanu

E-grāmata: Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations

  • Formāts: EPUB+DRM
  • Sērija : Scientific Computation
  • Izdošanas datums: 05-Aug-2016
  • Izdevniecība: Springer
  • Valoda: eng
  • ISBN-13: 9789401777612
  • Formāts - EPUB+DRM
  • Cena: 130,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Scientific Computation
  • Izdošanas datums: 05-Aug-2016
  • Izdevniecība: Springer
  • Valoda: eng
  • ISBN-13: 9789401777612

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwells system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwells system and the important problem of its spurious-free approximations. Treatment of unbounded domains by Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML) is described and analyzed in a separate chapter. The two last chapters deal with time approximation including local time-stepping and with the study of some complex models, i.e. acoustics in flow, gravity waves and vibrating thin plates. Throughout, emphasis is put on the accuracy and computational efficiency of the methods, with attention brought to their practical aspects.This monograph also covers in details the theoretical foundations and numerical analysis of these methods. As a result, this monograph will be of interest to practitioners, researchers, engineers and graduate students involved in the numerical simulationof waves.

Recenzijas

In this book finite elements and discontinuous Galerkin (DG) methods are employed for the solution of wave equations. The book consists of a preface and eight chapters. Each chapter concludes with a list of references. It is an excellent reference for researchers working on numerical solutions of transient wave equations. It can also be used as a textbook for a graduate course . (Beny Neta, Mathematical Reviews, April, 2017)



This monograph presents much of the progress made during the last two decades in the numerical solution of hyperbolic equations like the acoustics and Maxwell's equation as well as in linear elastodynamic systems. the book is full of mathematical analysis, but also manypractical aspects and a lot of numerical results are given. the book may be also quite useful for practitioners. (Rolf Dieter Grigorieff, zbMATH 1360.65233, 2017)

1 Classical Continuous Models and Their Analysis
1(38)
1.1 The Basic Equations
1(9)
1.1.1 The Acoustics Equation
2(1)
1.1.2 Maxwell's Equations
2(4)
1.1.3 The Linear Elastodynamics System
6(2)
1.1.4 Boundary Conditions
8(2)
1.2 Functional Issues
10(20)
1.2.1 Some Functional Spaces
10(6)
1.2.2 Variational Formulations
16(4)
1.2.3 Energy Identities
20(2)
1.2.4 Well-Posedness Results of Waves Equations
22(8)
1.3 Plane Wave Solutions
30(9)
1.3.1 A General Solution of the Homogeneous Wave Equation
30(2)
1.3.2 Application to Maxwell's Equations
32(2)
1.3.3 The 2D Case
34(1)
1.3.4 Application to the Isotropic Linear Elastodynamics System
35(1)
References
36(3)
2 Definition of Different Types of Finite Elements
39(56)
2.1 1D Mass-Lumping and Spectral Elements
39(8)
2.1.1 A Complex Solution for a Simple Problem
39(2)
2.1.2 Mass-Lumping
41(4)
2.1.3 Spectral Elements
45(1)
2.1.4 Nodal and Modal Elements
46(1)
2.2 Quadrilaterals and Hexahedra
47(5)
2.2.1 Higher-Dimensional Tensor Quadrature Rules
47(1)
2.2.2 Tensor Unit Spectral Elements
48(2)
2.2.3 Extension to Quadrilaterals and Hexahedra
50(2)
2.3 Triangles and Tetrahedra
52(9)
2.3.1 Spectral Triangles and Tetrahedra
52(5)
2.3.2 Mass-Lumped Triangles and Tetrahedra
57(4)
2.4 Purely 3D Elements
61(6)
2.4.1 Wedges
62(1)
2.4.2 Pyramids
62(5)
2.5 Tetrahedral and Triangular Edge Elements
67(12)
2.5.1 Mixed Formulation
67(1)
2.5.2 A First Family
67(4)
2.5.3 A Second Family
71(2)
2.5.4 Tetrahedral Mass-Lumped Edge Elements
73(3)
2.5.5 Triangular Mass-Lumped Edge Elements
76(3)
2.6 Hexahedral and Quadrilateral Edge Elements
79(5)
2.6.1 First Family
79(3)
2.6.2 Second Family
82(2)
2.7 H(div) Finite Elements
84(4)
2.7.1 Tetrahedral and Triangular Elements
84(2)
2.7.2 Hexahedral and Quadrilateral Elements
86(2)
2.8 Other Mixed Elements
88(7)
2.8.1 Pyramidal and Prismatic Edge Elements
88(2)
2.8.2 Pyramidal and Prismatic H(div) Elements
90(1)
References
91(4)
3 Hexahedral and Quadrilateral Spectral Elements for Acoustic Waves
95(80)
3.1 Second-Order Formulation of the Acoustics Equation
95(5)
3.1.1 The Continuous and Approximate Problem
95(1)
3.1.2 Discretization of the Integrals
96(4)
3.2 First-Order Formulation of the Acoustics Equation
100(6)
3.2.1 The Mixed Formulation
101(1)
3.2.2 The Mass Matrices
102(1)
3.2.3 The Stiffness Matrices
103(3)
3.3 Comparison of the Methods
106(6)
3.3.1 Matrix Formulation
106(1)
3.3.2 A Theorem of Equivalence
107(2)
3.3.3 Comparison of the Costs
109(3)
3.4 Dispersion Relation
112(23)
3.4.1 The Continuous Equation
113(1)
3.4.2 A Didactic Case: The Pi Approximation
113(3)
3.4.3 The Concept of Numerical Dispersion
116(1)
3.4.4 P2 Approximation
117(3)
3.4.5 P3 and Higher-Order Approximations
120(6)
3.4.6 Extension to Higher Dimensions
126(9)
3.5 Reflection-Transmission by a Discontinuous Interface
135(10)
3.5.1 The Continuous Problem
135(1)
3.5.2 FEM Approximation of the Heterogeneous Wave Equation
136(1)
3.5.3 Taylor Expansion of the Wavenumber
137(1)
3.5.4 Interface Between Two Elements
138(1)
3.5.5 Interface at an Interior Point
139(1)
3.5.6 Extension to Higher-Order Approximations
140(1)
3.5.7 A Two-Layer Experiment
141(4)
3.6 hp-a priori Error Estimates
145(21)
3.6.1 Some Properties of Meshes
146(2)
3.6.2 Some Interpolation Errors for Quadrilaterals and Hexahedra
148(4)
3.6.3 hp-Estimation of Numerical Integration Errors
152(7)
3.6.4 hp a priori Error Estimate for the Semi-discrete Approximation
159(7)
3.7 The Linear Elastodynamics System
166(9)
3.7.1 Second Order Formulation
166(1)
3.7.2 First-Order Formulation
167(3)
3.7.3 Comparison of the Two Approaches
170(3)
References
173(2)
4 Discontinuous Galerkin Methods
175(58)
4.1 General Formulation for Linear Hyperbolic Problems
175(13)
4.1.1 The Discontinuous Galerkin Formulation
175(6)
4.1.2 Energy Identity
181(3)
4.1.3 Application to Some Wave Equations
184(4)
4.2 Approximation by Triangles and Tetrahedra
188(9)
4.2.1 The Mass Integrals
189(2)
4.2.2 The Stiffness Integrals
191(2)
4.2.3 The Jump Terms
193(4)
4.3 Approximation by Quadrilaterals and Hexahedra
197(10)
4.3.1 The Mass Integrals
197(1)
4.3.2 The Stiffness Integrals
198(1)
4.3.3 The Jump Terms
199(2)
4.3.4 Application to Wave Equations
201(6)
4.4 Comparison of the DG Methods for Maxwell's Equations
207(11)
4.4.1 Gauss or Gauss--Lobatto?
207(3)
4.4.2 Tetrahedra with and Without Reconstruction of the Stiffness Matrix
210(1)
4.4.3 Tetrahedra Versus Hexahedra
210(8)
4.5 Plane Wave Analysis
218(8)
4.5.1 The Eigenvalue Problem for the 1D Model
218(3)
4.5.2 Numerical Dispersion and Dissipation
221(3)
4.5.3 Extension to Higher Dimensions
224(2)
4.6 Interior Penalty Discontinuous Galerkin Methods
226(7)
4.6.1 General Formulation
226(2)
4.6.2 Coercivity of the Discrete Operator
228(4)
References
232(1)
5 The Maxwell's System and Spurious Modes
233(52)
5.1 A First Model and Its Approximation
233(4)
5.1.1 The Continuous Model
233(1)
5.1.2 The Approximate Model
234(1)
5.1.3 The Discrete Mass Integral
235(2)
5.2 A Second Model and Its Approximations
237(8)
5.2.1 The Continuous Model
237(1)
5.2.2 General Formulations of the Approximations
238(1)
5.2.3 Approximation in H(Curl, Ω)
239(1)
5.2.4 Approximation in [ H1(Ω)]3
240(2)
5.2.5 Comparison of the Approximations
242(3)
5.3 Suppressing Spurious Modes
245(18)
5.3.1 Some Background About the Spurious Modes
245(7)
5.3.2 Computation of the Eigenvalues of × × on a Cube
252(3)
5.3.3 Discontinuous Galerkin Methods
255(3)
5.3.4 The Second Family of Edge Elements
258(3)
5.3.5 Continuous Elements
261(1)
5.3.6 The Case of the First Family of Edge Elements
261(2)
5.4 Error Estimates for DGM
263(22)
5.4.1 The Discontinuous Galerkin Formulation
263(1)
5.4.2 Choice of a Projector
264(3)
5.4.3 hp-Projection Errors
267(4)
5.4.4 Trace Lemmas
271(2)
5.4.5 A Priori Error Estimates in Energy Norm
273(7)
5.4.6 Extension to the Dissipative Case
280(2)
References
282(3)
6 Approximating Unbounded Domains
285(30)
6.1 Absorbing Boundary Conditions (ABC)
286(11)
6.1.1 Transparent Condition of the Wave Equation
286(1)
6.1.2 Construction of ABC for the Wave Equation
287(4)
6.1.3 Plane Wave Analysis
291(1)
6.1.4 Finite Element Implementation
292(4)
6.1.5 The Maxwell's System
296(1)
6.2 Perfectly Matched Layers (PML)
297(18)
6.2.1 Interpretation of the Method
297(3)
6.2.2 The Acoustics System
300(6)
6.2.3 The Maxwell's System
306(2)
6.2.4 The Linear Elastodynamics System
308(2)
6.2.5 Modified PML
310(2)
References
312(3)
7 Time Approximation
315(40)
7.1 Schemes with a Constant Time-Step
315(19)
7.1.1 Construction of the Schemes
316(4)
7.1.2 Stability of the Schemes by Plane Wave Analysis
320(5)
7.1.3 Stability of the Schemes by Energy Techniques
325(2)
7.1.4 The Modified Equation and Unbounded Domains
327(3)
7.1.5 A Remark About the Time Approximation of Dissipative DG Schemes
330(4)
7.2 Local Time Stepping
334(21)
7.2.1 Symplectic Schemes for Conservative Approximations
335(5)
7.2.2 Scheme Based on a Lagrange Multiplier
340(6)
7.2.3 An Explicit Conservative Scheme for Second-Order Wave Equations
346(7)
References
353(2)
8 Some Complex Models
355
8.1 The Linearized Euler Equations
355(9)
8.1.1 Discontinuous Galerkin Approximation
356(4)
8.1.2 H1-L2 Approximation
360(4)
8.2 The Linear Cauchy--Poisson Problem
364(8)
8.2.1 The Continuous Problem and Its Approximation
364(3)
8.2.2 Unbounded Domains
367(5)
8.3 Vibrating Thin Plates
372
8.3.1 The Continuous Models
373(1)
8.3.2 Plane Wave Analysis
374(4)
8.3.3 Mixed Spectral Element Approximation
378(2)
References
380