Preface |
|
xiii | |
Author |
|
xv | |
Chapter 1 Finite Element Concepts |
|
1 | (28) |
|
|
1 | (1) |
|
1.2 Direct Stiffness Method |
|
|
2 | (3) |
|
1.2.1 Merging the Element Stiffness Matrices |
|
|
3 | (2) |
|
1.2.2 Augmenting the Element Stiffness Matrix |
|
|
5 | (1) |
|
1.2.3 Stiffness Matrix Is Banded |
|
|
5 | (1) |
|
|
5 | (2) |
|
|
7 | (6) |
|
1.5 Axially Loaded Rod Example |
|
|
13 | (5) |
|
1.5.1 Augmented Matrices for the Rod |
|
|
16 | (1) |
|
1.5.2 Merge of Element Matrices for the Rod |
|
|
17 | (1) |
|
|
18 | (3) |
|
1.7 Other Structural Components |
|
|
21 | (5) |
|
|
21 | (1) |
|
|
21 | (5) |
|
1.7.2.1 General Beam Equations |
|
|
24 | (2) |
|
|
26 | (1) |
|
1.7.4 Two- or Three-Dimensional Solids |
|
|
26 | (1) |
|
|
26 | (2) |
|
|
28 | (1) |
|
|
28 | (1) |
Chapter 2 Linear Elasticity |
|
29 | (24) |
|
|
29 | (13) |
|
2.1.1 Geometry of Deformation |
|
|
29 | (1) |
|
2.1.2 Balance of Momentum |
|
|
30 | (1) |
|
|
30 | (1) |
|
2.1.4 Constitutive Relations |
|
|
31 | (2) |
|
2.1.5 Boundary Conditions and Initial Conditions |
|
|
33 | (1) |
|
2.1.6 Incompressible Materials |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
36 | (1) |
|
2.1.12 Bending and Shearing |
|
|
37 | (1) |
|
2.1.13 Properties of Solutions |
|
|
38 | (2) |
|
2.1.14 A Plane Stress Example with a Singularity in Stress |
|
|
40 | (2) |
|
|
42 | (3) |
|
2.2.1 Proof of Minimum Potential Energy |
|
|
44 | (1) |
|
|
45 | (3) |
|
2.4 Axially Symmetric Deformations |
|
|
48 | (2) |
|
2.4.1 Cylindrical Coordinates |
|
|
48 | (1) |
|
|
49 | (1) |
|
2.4.3 Plane Stress and Plane Strain |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
Chapter 3 Finite Element Method for Linear Elasticity |
|
53 | (28) |
|
3.1 Finite Element Approximation |
|
|
54 | (12) |
|
|
55 | (2) |
|
3.1.2 Finite Element Equations |
|
|
57 | (1) |
|
3.1.3 Basic Equations in Matrix Notation |
|
|
58 | (1) |
|
3.1.4 Basic Equations Using Virtual Work |
|
|
59 | (1) |
|
3.1.5 Underestimate of Displacements |
|
|
60 | (1) |
|
3.1.6 Nondimensional Equations |
|
|
61 | (2) |
|
|
63 | (3) |
|
3.2 General Equations for an Assembly of Elements |
|
|
66 | (9) |
|
3.2.1 Generalized Variational Principle |
|
|
68 | (1) |
|
|
69 | (1) |
|
3.2.3 Hybrid Displacement Functional |
|
|
69 | (1) |
|
3.2.4 Hybrid Stress and Complementary Energy |
|
|
70 | (2) |
|
3.2.5 Mixed Methods of Analysis |
|
|
72 | (3) |
|
3.3 Nearly Incompressible Materials |
|
|
75 | (4) |
|
3.3.1 Nearly Incompressible Plane Strain |
|
|
78 | (1) |
|
|
79 | (2) |
Chapter 4 The Triangle and the Tetrahedron |
|
81 | (22) |
|
4.1 Linear Functions over a Triangular Region |
|
|
81 | (3) |
|
4.2 Triangular Element for Plane Stress and Plane Strain |
|
|
84 | (4) |
|
4.3 Plane Quadrilateral from Four Triangles |
|
|
88 | (5) |
|
4.3.1 Square Element Formed from Four Triangles |
|
|
90 | (3) |
|
4.4 Plane Stress Example: Short Beam |
|
|
93 | (4) |
|
4.4.1 Extrapolation of the Solution |
|
|
96 | (1) |
|
4.5 Linear Strain Triangles |
|
|
97 | (1) |
|
4.6 Four-Node Tetrahedron |
|
|
98 | (1) |
|
|
99 | (1) |
|
|
99 | (4) |
Chapter 5 The Quadrilateral and the Hexahedron |
|
103 | (68) |
|
5.1 Four-Node Plane Rectangle |
|
|
103 | (12) |
|
5.1.1 Stress Calculations |
|
|
109 | (1) |
|
5.1.2 Plane Stress Example: Pure Bending |
|
|
110 | (2) |
|
5.1.3 Plane Strain Example: Bending with Shear |
|
|
112 | (1) |
|
5.1.4 Plane Stress Example: Short Beam |
|
|
112 | (3) |
|
5.2 Improvements to Four-Node Quadrilateral |
|
|
115 | (15) |
|
5.2.1 WilsonTaylor Quadrilateral |
|
|
115 | (3) |
|
5.2.2 Enhanced Strain Formulation |
|
|
118 | (4) |
|
5.2.3 Approximate Volumetric Strains |
|
|
122 | (3) |
|
5.2.4 Reduced Integration on the k Term |
|
|
125 | (1) |
|
5.2.5 Reduced Integration on the λ Term |
|
|
126 | (1) |
|
5.2.6 Uniform Reduced Integration |
|
|
127 | (3) |
|
5.2.7 Example Using Improved Elements |
|
|
130 | (1) |
|
5.3 Numerical Integration |
|
|
130 | (3) |
|
5.4 Coordinate Transformations |
|
|
133 | (1) |
|
5.5 Isoparametric Quadrilateral |
|
|
134 | (5) |
|
5.5.1 Wilson-Taylor Element |
|
|
138 | (1) |
|
5.5.2 Three-Node Triangle as a Special Case of Rectangle |
|
|
138 | (1) |
|
5.6 Eight-Node Quadrilateral |
|
|
139 | (10) |
|
|
144 | (1) |
|
5.6.2 Plane Stress Example: Pure Bending |
|
|
145 | (1) |
|
5.6.3 Plane Stress Example: Bending with Shear |
|
|
145 | (3) |
|
5.6.4 Plane Stress Example: Short Beam |
|
|
148 | (1) |
|
5.6.5 General Quadrilateral Element |
|
|
148 | (1) |
|
|
149 | (3) |
|
|
152 | (1) |
|
|
152 | (2) |
|
|
154 | (9) |
|
|
154 | (4) |
|
5.10.2 Alternative Formulation for Plane Strain |
|
|
158 | (2) |
|
|
160 | (3) |
|
|
163 | (5) |
|
|
168 | (1) |
|
|
169 | (2) |
Chapter 6 Errors and Convergence of Finite Element Solution |
|
171 | (10) |
|
|
171 | (2) |
|
|
173 | (3) |
|
|
173 | (1) |
|
6.2.2 Parallel Deviation for a Quadrilateral |
|
|
174 | (1) |
|
|
175 | (1) |
|
|
175 | (1) |
|
|
176 | (4) |
|
6.3.1 Wilson-Taylor Quadrilateral |
|
|
178 | (2) |
|
|
180 | (1) |
Chapter 7 Heat Conduction in Elastic Solids |
|
181 | (10) |
|
7.1 Differential Equations and Virtual Work |
|
|
181 | (4) |
|
7.2 Example Problem: One-Dimensional Transient Heat Flux |
|
|
185 | (2) |
|
7.3 Example: Hollow Cylinder |
|
|
187 | (1) |
|
|
188 | (3) |
Chapter 8 Finite Element Method for Plasticity |
|
191 | (14) |
|
|
191 | (6) |
|
|
194 | (1) |
|
|
195 | (1) |
|
8.1.3 Summary of Plasticity |
|
|
196 | (1) |
|
8.2 Finite Element Formulation for Plasticity |
|
|
197 | (4) |
|
8.2.1 Fundamental Solution |
|
|
198 | (1) |
|
8.2.2 Iteration to Improve the Solution |
|
|
199 | (2) |
|
|
201 | (2) |
|
|
203 | (1) |
|
|
204 | (1) |
Chapter 9 Viscoelasticity |
|
205 | (16) |
|
9.1 Theory of Linear Viscoelasticity |
|
|
205 | (10) |
|
9.1.1 Recurrence Formula for History |
|
|
210 | (1) |
|
9.1.2 Viscoelastic Example |
|
|
211 | (4) |
|
9.2 Finite Element Formulation for Viscoelasticity |
|
|
215 | (4) |
|
9.2.1 Basic Step-by-Step Solution Method |
|
|
216 | (1) |
|
9.2.2 Step-by-Step Calculation with Load Correction |
|
|
217 | (1) |
|
9.2.3 Plane Strain Example |
|
|
218 | (1) |
|
|
219 | (1) |
|
|
220 | (1) |
Chapter 10 Dynamic Analyses |
|
221 | (34) |
|
|
221 | (3) |
|
|
221 | (1) |
|
|
222 | (2) |
|
|
224 | (1) |
|
|
224 | (1) |
|
|
225 | (1) |
|
10.3 Mode Superposition Solution |
|
|
225 | (2) |
|
10.4 Example: Axially Loaded Rod |
|
|
227 | (9) |
|
10.4.1 Exact Solution for Axially Loaded Rod |
|
|
227 | (2) |
|
10.4.2 Finite Element Model |
|
|
229 | (3) |
|
10.4.2.1 One-Element Model |
|
|
229 | (1) |
|
10.4.2.2 Two-Element Model |
|
|
230 | (2) |
|
10.4.3 Mode Superposition for Continuum Model of the Rod |
|
|
232 | (4) |
|
|
236 | (1) |
|
10.6 Dynamic Analysis with Damping |
|
|
237 | (4) |
|
10.6.1 Viscoelastic Damping |
|
|
238 | (1) |
|
10.6.2 Viscous Body Force |
|
|
239 | (1) |
|
10.6.3 Analysis of Damped Motion by Mode Superposition |
|
|
240 | (1) |
|
10.7 Numerical Solution of Differential Equations |
|
|
241 | (8) |
|
10.7.1 Constant Average Acceleration |
|
|
241 | (2) |
|
10.7.2 General Newmark Method |
|
|
243 | (1) |
|
|
244 | (1) |
|
10.7.3.1 Implicit Methods in General |
|
|
244 | (1) |
|
10.7.3.2 Explicit Methods in General |
|
|
244 | (1) |
|
10.7.4 Stability Analysis of Newmark's Method |
|
|
245 | (1) |
|
10.7.5 Convergence, Stability, and Error |
|
|
246 | (1) |
|
10.7.6 Example: Numerical Integration for Axially Loaded Rod |
|
|
247 | (2) |
|
10.8 Example: Analysis of Short Beam |
|
|
249 | (2) |
|
|
251 | (2) |
|
|
253 | (2) |
Chapter 11 Linear Elastic Fracture Mechanics |
|
255 | (14) |
|
|
255 | (5) |
|
|
257 | (1) |
|
|
258 | (2) |
|
|
258 | (1) |
|
|
259 | (1) |
|
|
259 | (1) |
|
11.2 Determination of K by Finite Element Analysis |
|
|
260 | (3) |
|
11.2.1 Crack Opening Displacement Method |
|
|
260 | (3) |
|
11.3 J-Integral for Plane Regions |
|
|
263 | (4) |
|
|
267 | (1) |
|
|
268 | (1) |
|
|
268 | (1) |
Chapter 12 Plates and Shells |
|
269 | (22) |
|
12.1 Geometry of Deformation |
|
|
269 | (1) |
|
12.2 Equations of Equilibrium |
|
|
270 | (1) |
|
12.3 Constitutive Relations for an Elastic Material |
|
|
271 | (2) |
|
|
273 | (3) |
|
12.5 Finite Element Relations for Bending |
|
|
276 | (4) |
|
12.6 Classical Plate Theory |
|
|
280 | (2) |
|
12.7 Plate Bending Example |
|
|
282 | (5) |
|
|
287 | (1) |
|
|
288 | (1) |
|
|
289 | (2) |
Chapter 13 Large Deformations |
|
291 | (36) |
|
13.1 Theory of Large Deformations |
|
|
291 | (18) |
|
|
292 | (1) |
|
|
293 | (4) |
|
13.1.3 Mooney-Rivlin Model of an Incompressible Material |
|
|
297 | (1) |
|
13.1.4 Generalized Mooney-Rivlin Model |
|
|
298 | (3) |
|
13.1.5 Polynomial Formula |
|
|
301 | (2) |
|
|
303 | (1) |
|
|
304 | (2) |
|
13.1.8 Logarithmic Strain Measure |
|
|
306 | (1) |
|
|
307 | (1) |
|
13.1.10 Fitting Constitutive Relations to Experimental Data |
|
|
308 | (1) |
|
13.1.10.1 Volumetric Data |
|
|
308 | (1) |
|
|
308 | (1) |
|
|
309 | (1) |
|
13.2 Finite Elements for Large Displacements |
|
|
309 | (8) |
|
13.2.1 Lagrangian Formulation |
|
|
311 | (1) |
|
13.2.2 Basic Step-by-Step Analysis |
|
|
312 | (1) |
|
13.2.3 Iteration Procedure |
|
|
312 | (1) |
|
13.2.4 Updated Reference Configuration |
|
|
313 | (2) |
|
|
315 | (1) |
|
|
315 | (2) |
|
13.3 Structure of Tangent Modulus |
|
|
317 | (1) |
|
13.4 Stability and Buckling |
|
|
318 | (1) |
|
|
319 | (1) |
|
13.5 Snap Through Buckling |
|
|
319 | (5) |
|
|
323 | (1) |
|
|
324 | (2) |
|
|
326 | (1) |
|
|
326 | (1) |
Chapter 14 Constraints and Contact |
|
327 | (22) |
|
14.1 Application of Constraints |
|
|
327 | (6) |
|
14.1.1 Lagrange Multipliers |
|
|
327 | (2) |
|
14.1.2 Perturbed Lagrangian Method |
|
|
329 | (2) |
|
|
331 | (1) |
|
14.1.4 Augmented Lagrangian Method |
|
|
332 | (1) |
|
|
333 | (8) |
|
14.2.1 Example: A Truss Contacts a Rigid Foundation |
|
|
333 | (4) |
|
14.2.1.1 Load Fy> 0 Is Applied with Fx = 0 |
|
|
335 | (1) |
|
14.2.1.2 Loads Are Ramped Up Together: Fx = 27a, Fy = 12.8a |
|
|
336 | (1) |
|
14.2.2 Lagrange Multiplier, No Friction Force |
|
|
337 | (1) |
|
|
338 | (1) |
|
|
338 | (1) |
|
14.2.3 Lagrange Multiplier, with Friction |
|
|
338 | (2) |
|
|
339 | (1) |
|
|
339 | (1) |
|
|
340 | (1) |
|
|
341 | (1) |
|
|
341 | (1) |
|
14.3 Finite Element Analysis |
|
|
341 | (5) |
|
14.3.1 Example: Contact of a Cylinder with a Rigid Plane |
|
|
342 | (1) |
|
14.3.2 Hertz Contact Problem |
|
|
343 | (3) |
|
|
346 | (1) |
|
|
347 | (1) |
|
|
348 | (1) |
|
|
348 | (1) |
Chapter 15 ANSYS APDL Examples |
|
349 | (122) |
|
|
349 | (4) |
|
|
351 | (1) |
|
15.1.2 Graphic Window Controls |
|
|
352 | (27) |
|
15.1.2.1 Graphics Window Logo |
|
|
352 | (1) |
|
15.1.2.2 Display of Model |
|
|
352 | (1) |
|
15.1.2.3 Display of Deformed and Undeformed Shape White on White |
|
|
352 | (1) |
|
15.1.2.4 Adjusting Graph Colors |
|
|
352 | (1) |
|
15.1.2.5 Printing from Windows Version of ANSYS |
|
|
353 | (1) |
|
15.1.2.6 Some Useful Notes |
|
|
353 | (1) |
|
15.2 ANSYS Elements SURF153, SURF154 |
|
|
353 | (1) |
|
|
354 | (3) |
|
|
357 | (3) |
|
15.5 Beam with a Distributed Load |
|
|
360 | (1) |
|
|
361 | (3) |
|
15.7 Plane Stress Example Using Triangles |
|
|
364 | (2) |
|
15.8 Cantilever Beam Modeled as Plane Stress |
|
|
366 | (3) |
|
15.9 Plane Stress: Pure Bending |
|
|
369 | (2) |
|
15.10 Plane Strain Bending Example |
|
|
371 | (5) |
|
15.11 Plane Stress Example: Short Beam |
|
|
376 | (3) |
|
|
379 | (2) |
|
15.12.1 Solution Procedure |
|
|
379 | (2) |
|
|
381 | (6) |
|
15.14 Viscoelasticity Creep Test |
|
|
387 | (4) |
|
15.15 Viscoelasticity Example |
|
|
391 | (3) |
|
15.16 Mode Shapes and Frequencies of a Rod |
|
|
394 | (3) |
|
15.17 Mode Shapes and Frequencies of a Short Beam |
|
|
397 | (1) |
|
15.18 Transient Analysis of Short Beam |
|
|
398 | (2) |
|
15.19 Stress Intensity Factor by Crack Opening Displacement |
|
|
400 | (2) |
|
15.20 Stress Intensity Factor by J-Integral |
|
|
402 | (3) |
|
15.21 Stretching of a Nonlinear Elastic Sheet |
|
|
405 | (3) |
|
15.22 Nonlinear Elasticity: Tensile Test |
|
|
408 | (4) |
|
|
412 | (3) |
|
15.24 Column Post-Buckling |
|
|
415 | (2) |
|
|
417 | (3) |
|
15.26 Plate Bending Example |
|
|
420 | (3) |
|
|
423 | (2) |
|
15.28 Gravity Load on a Cylindrical Shell |
|
|
425 | (4) |
|
|
429 | (3) |
|
15.30 Heated Rectangular Rod |
|
|
432 | (2) |
|
15.31 Heated Cylindrical Rod |
|
|
434 | (4) |
|
|
438 | (4) |
|
15.33 Truss Contacting a Rigid Foundation |
|
|
442 | (4) |
|
15.34 Compression of a Rubber Cylinder between Rigid Plates |
|
|
446 | (5) |
|
15.35 Hertz Contact Problem |
|
|
451 | (5) |
|
15.36 Elastic Rod Impacting a Rigid Wall |
|
|
456 | (4) |
|
15.37 Curve Fit for Nonlinear Elasticity Using Blatz-Ko Model |
|
|
460 | (4) |
|
15.38 Curve Fit for Nonlinear Elasticity Using Polynomial Model |
|
|
464 | (5) |
|
|
469 | (2) |
Chapter 16 ANSYS Workbench |
|
471 | (11) |
|
16.1 Two- and Three-Dimensional Geometry |
|
|
471 | (1) |
|
|
472 | (1) |
|
|
473 | (4) |
|
16.3.1 Short Beam Geometry |
|
|
473 | (1) |
|
16.3.2 Short Beam, Static Loading |
|
|
474 | (2) |
|
16.3.3 Short Beam, Transient Analysis |
|
|
476 | (1) |
|
16.4 Filleted Bar Example |
|
|
477 | (3) |
|
|
480 | (2) |
Bibliography |
|
482 | (1) |
Index |
|
483 | |