Atjaunināt sīkdatņu piekrišanu

E-grāmata: Finnie's Notes on Fracture Mechanics: Fundamental and Practical Lessons

  • Formāts: PDF+DRM
  • Izdošanas datums: 14-Oct-2016
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781493924776
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 14-Oct-2016
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781493924776
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook consists primarily of notes by Iain Finnie who taught a popular course on fracture mechanics at the University of California at Berkeley. It presents a comprehensive and detailed exposition of fracture, the fundamentals of fracture mechanics and procedures for the safe design of engineering components made from metal alloys, brittle materials like glasses and ceramics, and composites. Interesting and practical problems are listed at the end of most chapters to give the student practice in applying the theory. A solutions manual is provided to the instructor. The text presents a unified perspective of fracture with a strong fundamental foundation and practical applications. In addition to its role as a text, this reference would be invaluable for the practicing engineer who is involved in the design and evaluation of components that are fracture critical.

This book also:

Presents details of derivations of the basic equations of fracture mechanics and the historical context of the development of fracture theory and methodology

Treats linear and nonlinear fracture mechanics methodologies beginning with a review of the basic equations of solid mechanics followed by solutions useful in fracture prediction

Illustrates the basis of linear elastic fracture mechanics (LEFM), practical applications of LEFM in the design of fracture-tolerant structural components

Offers interesting, practical, classroom proven problems at the end of most chapters Includes instructor's solutions manual

 
1 The Nature of Fracture
1(20)
1.1 Introduction
1(4)
1.2 The Ideal Strength and Mechanisms of Failure
5(4)
1.3 Historical Aspects
9(12)
References
17(4)
2 Stress, Strain, and the Basic Equations of Solid Mechanics
21(42)
2.1 Introduction
21(1)
2.2 Analysis of Stress
22(6)
2.3 Analysis of Strain
28(5)
2.4 Requirements for a Solution
33(1)
2.5 Elasticity
34(2)
2.6 The Yield Condition
36(6)
2.7 Plasticity
42(7)
2.8 Creep and Viscous Behavior
49(1)
2.9 Plane Stress and Plane Strain
50(3)
2.10 Methods of Solution
53(10)
References
60(3)
3 Some Solutions That Are Useful in Fracture Prediction
63(32)
3.1 Introduction
63(1)
3.2 State of Stress Near the Tip of the Crack
64(3)
3.3 Determination of the Stresses for Mode I and Mode II Loading
67(7)
3.4 Determination of the Stresses for a Mode III Crack
74(1)
3.5 Determination of the Stresses Around a Circular Hole
75(3)
3.6 Determination of Stresses Around an Elliptical Crack
78(2)
3.7 Elastic--Plastic Solutions
80(5)
3.8 Solutions for Notched Bars
85(10)
Problems
91(2)
References
93(2)
4 The Basis of Linear Elastic Fracture Mechanics
95(38)
4.1 Introduction
95(1)
4.2 The Energy Approach
96(11)
4.3 Stress Intensity Approach
107(13)
4.4 The Equivalence of Energy and Stress Intensity Approaches
120(2)
4.5 Displacements Due to Cracks
122(3)
4.6 Work of Fracture
125(8)
Problems
128(2)
References
130(3)
5 Some Applications of Linear Elastic Fracture Mechanics
133(36)
5.1 Introduction
133(2)
5.2 Estimates of Plastic Zone Size and Correction Factors
135(11)
The Dugdale Model
141(2)
Plane Strain
143(3)
5.3 Experimental Evidence of Plastic Zones
146(1)
5.4 The Plane Stress--Plane Strain Transition
147(1)
5.5 Elliptical or "Thumbnail" Cracks
148(3)
5.6 Slow Crack Growth by Fatigue and Stress Corrosion Cracking
151(3)
5.7 Slow Growth, Pop-In, and Rate Effects
154(6)
5.8 Test Techniques and Experimental Data
160(9)
Problems
166(2)
References
168(1)
6 Fracture Prediction Beyond the Linear Elastic Range
169(32)
6.1 Introduction
169(1)
6.2 The Transition Temperature
170(9)
6.3 The Combination of Transition Temperature and Linear Elastic Fracture Mechanics
179(4)
6.4 Crack Opening Displacement
183(5)
6.5 The/Integral
188(13)
Problems
198(1)
References
199(2)
7 Cleavage and Ductile Fracture Mechanisms: The Microstructural Basis of Fracture Toughness
201(14)
7.1 Introduction
201(3)
7.2 Cleavage Mechanisms
204(1)
7.3 Cleavage of Notched and Cracked Members
205(3)
7.4 Ductile Fracture of Notched or Cracked Members
208(7)
References
212(3)
8 The Fracture of Brittle Solids
215
8.1 Introduction
215(2)
8.2 Failure Under Tensile States of Stress
217(6)
8.3 Estimation of Parameters
223(4)
8.4 Some Applications of the Weibull Distribution
227(4)
Safety Factor
229(2)
8.5 The Location of Fracture in Brittle Solids
231(3)
8.6 A More Rigorous Derivation of the Weibull Distribution
234(2)
8.7 Composite Using Strong Fibers and Whiskers
236(6)
Parallel Elements in Series
239(3)
8.8 Brittle Solids Under Compressive and Multiaxial Stresses
242
Problems
245(4)
References
249
C. K. H. Dharan is a Professor at the University of California at Berkeley. B. S. Kang is a Professor at Pusan National University. Iain Finnie was a Professor of a course on fracture mechanics at the University of California at Berkeley.