Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fintech with Artificial Intelligence, Big Data, and Blockchain

Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Blockchain Technologies
  • Izdošanas datums: 08-Mar-2021
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789813361379
  • Formāts - PDF+DRM
  • Cena: 130,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Blockchain Technologies
  • Izdošanas datums: 08-Mar-2021
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789813361379

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book introduces readers to recent advancements in financial technologies. The contents cover some of the state-of-the-art fields in financial technology, practice, and research associated with artificial intelligence, big data, and blockchain—all of which are transforming the nature of how products and services are designed and delivered, making less adaptable institutions fast become obsolete. The book provides the fundamental framework, research insights, and empirical evidence in the efficacy of these new technologies, employing practical and academic approaches to help professionals and academics reach innovative solutions and grow competitive strengths.

1. Blockchain, Cryptocurrency, and Artificial Intelligence in Finance.-
2. Alternative Data, Big Data, and Applications to Finance.-
3. Application of Big Data with Financial Technology in Financial Services.-
4. Using Machine Learning to Predict the Defaults of Credit Card Clients.-
5. Arti?cial Intelligence and Advanced Time Series Classi?cation: Residual Attention Net for Cross-Domain Modeling.-
6. Generating Synthetic Sequential Data for Enhanced Model Training Through Attention: A Generative Adversarial Net Framework.

Dr. Paul Moon Sub Choi: Dr. Choi has served on the business faculty of Ewha (Associate Dean and Associate Professor of Finance), Cornell (Fulbright Visiting Scholar), and the State University of New York at Binghamton (lecturer). He earned a Ph.D. with a financial economics concentration and an A.M. in statistics from Cornell and Harvard Universities, respectively. He was an undergraduate economics major at Yonsei University before joining Deutsche Bank in equity research on the Korean technology industry. He has published numerous peer-reviewed research articles in leading journals and presented papers in some of the most prestigious conferences in finance and economics. His recent research areas include distributed ledger technology (blockchain), artificial intelligence, financial technology, etc. He is an advisor at various technology-based start-ups, including OrganicSmart, Lozi, Squared-S Artificial Intelligence, etc.

Dr. Seth H. Huang: Dr. Huang has over ten yearsof artificial intelligence (A.I.) research and financial management experiences developing large-scale fintech applications for hedging, global sentiment analysis, and risk management. Most recently, he was Director of A.I. Applications Research Center in Guangdong, China. He occasionally served on the business faculty at the State University of New York-Korea (Adjunct Professor of Finance), the Hong Kong University of Science and Technology (Adjunct Associate Professor of Finance), Ewha Womans University (Assistant Professor of Finance), and Soochow University (lecturer) designing and teaching fintech, A.I., and finance courses. He has vast cross-industry application expertise with 6 patents on A.I. predictive systems and is the founder of a quantitative trading operation, Aris Intelligence Corporation, based in New York. He earned his Ph.D. with a financial economics concentration from Cornell University.