Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fire Safety Design for Tall Buildings

  • Formāts: 250 pages
  • Izdošanas datums: 18-Feb-2021
  • Izdevniecība: CRC Press
  • ISBN-13: 9781000338447
  • Formāts - EPUB+DRM
  • Cena: 68,87 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 250 pages
  • Izdošanas datums: 18-Feb-2021
  • Izdevniecība: CRC Press
  • ISBN-13: 9781000338447

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Fire Safety Design for Tall Buildings provides structural engineers, architects, and students with a systematic introduction to fire safety design for tall buildings based on current analysis methods, design guidelines, and codes. It covers almost all aspects of fire safety design that an engineer or an architect might encountersuch as performance-based design and the basic principles of fire development and heat transfer.

It also sets out an effective way of preventing the progressive collapse of a building in fire, and it demonstrates 3D modeling techniques to perform structural fire analysis with examples that replicate real fire incidents such as the Twin Towers and WTC7. This helps readers to understand the design of structures and analyze their behavior in fire.
Preface xix
Acknowledgments xxi
Author xxiii
1 Introduction
1(6)
1.1 Aims and scope
1(2)
1.2 Main fire safety design issues for tall buildings
3(1)
1.3 Structure of the book
3(4)
Notes
5(1)
References
5(2)
2 Regulatory requirements and basic fire safety design principles
7(36)
2.1 Introduction
7(1)
2.2 Fire incidents and fire tests of tall buildings worldwide
7(19)
2.2.1 Grenfell Tower
8(1)
2.2.1.1 The new cladding system
9(1)
2.2.1.2 Compartment and evacuation route for Grenfell Tower
9(5)
2.2.1.3 Collapse potential for Grenfell Tower
14(1)
2.2.1.4 Major findings from Interim Report of British Research Establishment (2017)
14(1)
2.2.2 Twin Tower
15(3)
2.2.3 World Trade Center 7
18(1)
2.2.4 Other fire incidents of tall buildings
18(1)
2.2.4.1 First Interstate Bank building in Los Angles
18(1)
2.2.4.2 Fiasco shopping center, Iran
19(1)
2.2.4.3 Faculty of Architecture Building, Delft University
19(1)
2.2.4.4 Windsor Tower, Spain
20(1)
2.2.5 Cardington fire test
20(1)
2.2.5.1 Introduction of the test
20(3)
2.2.5.2 Failure modes for buildings in fire
23(2)
2.2.6 Discussion
25(1)
2.3 Current design guidance and regulations to fire safety in high-rise buildings
26(10)
2.3.1 British design guidance and regulations
26(1)
2.3.1.1 Building Regulations 2010---Approved Document B
26(2)
2.3.1.2 The FSO and Housing Act 2004
28(2)
2.3.1.3 BS 7974:2019
30(1)
2.3.1.4 BS 9999:2017
31(1)
2.3.1.5 BS 5950-8:2003
31(1)
2.3.1.6 BS 476-20:198 7
31(1)
2.3.1.7 Design guidelines from IStructE and Steel Construction Institute
31(1)
2.3.2 Eurocode
32(1)
2.3.3 Guidelines from International Organization for Standardization
32(1)
2.3.3.1 ISO 24679-1:2019(en)
32(1)
2.3.3.2 ISO 16730-1 and ISO 16733-1
32(1)
2.3.3.3 ISO 834-1:1999
33(1)
2.3.4 US design guidance
33(1)
2.3.4.1 National Fire Protection Association
33(1)
2.3.4.2 International Code Council---International Fire Code® (IFC®)
33(1)
2.3.4.3 American Society for Testing and Materials (ASTM)
34(1)
2.3.4.4 American Society of Civil Engineers
34(1)
2.3.4.5 Federal Standards and Guidelines
35(1)
2.3.5 Chinese design guidance
35(1)
2.3.6 New Zealand code NZS 3404 Part 1: 1997
35(1)
2.3.7 Australian code AS 4100:1998
36(1)
2.4 Basic principles for fire safety of tall buildings
36(7)
2.4.1 Main design objective
36(1)
2.4.2 Main design tasks
37(1)
2.4.3 Structural fire design
37(1)
2.4.3.1 Key design tasks in structural fire design
38(1)
2.4.3.2 Design approach
38(1)
2.4.3.3 Pros and cons of the two design methods
39(1)
2.4.4 Robustness of the structure in fire
39(1)
2.4.5 Fire modeling
39(1)
2.4.5.1 Modeling the atmosphere temperature induced by fire
39(1)
2.4.5.2 Modeling the thermal response of load-bearing building elements
40(1)
2.4.5.3 Summary
40(1)
References
40(3)
3 Fundamentals of fire and fire safety design
43(34)
3.1 Introduction
43(1)
3.2 Fire development process
43(1)
3.3 Design fire temperature
44(2)
3.1.1 Standard fire temperature-time curve
45(1)
3.1.2 The parametric temperature-time curves
45(1)
3.1.3 Summary
46(1)
3.4 Design fire in a compartment
46(7)
3.4.1 Characterization of compartment
47(1)
3.4.1.1 Characterization of fire enclosure
47(1)
3.4.1.2 Characterization of openings
48(1)
3.4.1.3 Duration of fire to be adopted in design
48(1)
3.4.2 Fuel-controlled and ventilation-controlled fire
49(1)
3.4.3 Long-cool and short-hot fire
49(1)
3.4.4 Fully developed fire
50(1)
3.4.5 Localized fire
50(1)
3.4.5.1 Calculation of thermal action of a localized fire from Eurocode
51(2)
3.4.6 Traveling fire
53(1)
3.4.7 Fire scenarios for tall buildings
53(1)
3.5 Fire severity
53(2)
3.6 Fire load
55(1)
3.6.1 Fire load calculation from Eurocode 1
55(1)
3.6.2 Fire load density from Eurocode 1
55(1)
3.7 Fire spread
56(1)
3.8 Routes of fire spread
56(3)
3.8.1 Horizontal spread of fire
57(1)
3.8.2 Vertical spread of fire
57(2)
3.8.2.1 Fire spread through ducts, shafts, and penetrations (internal)
59(1)
3.8.2.2 Fire spread through facade
59(1)
3.9 Structural fire design
59(10)
3.9.1 Determine the compartment temperature (design fire)
60(1)
3.9.2 Determine the thermal response of structural members
61(1)
3.9.3 Heat transfer
61(1)
3.9.3.1 Thermodynamics of heat transfer
61(2)
3.9.3.2 Eurocode formula to determine member temperature
63(2)
3.9.4 Material degradation at elevated temperatures
65(1)
3.9.4.1 Degradation of steel material in fire
65(1)
3.9.4.2 Degradation of concrete material in fire
66(1)
3.9.5 Design values of material properties under fire
66(1)
3.9.6 Design of structural members in fire
67(1)
3.9.6.1 Mechanical design approaches of structural members in fire
67(2)
3.9.6.2 The acceptance criteria in designing structural members for tall buildings
69(1)
3.10 Fire resistance
69(3)
3.10.1 Methods to determine fire resistance
70(1)
3.10.2 Fire resistance rating
70(1)
3.10.3 Fire resistance test for load-bearing structural members
70(1)
3.10.4 Fire resistance requirements for elements of a tall building
71(1)
3.11 Fire protection method
72(5)
3.11.1 Active control system
72(1)
3.11.2 Passive control system
72(1)
3.11.2.1 Intumescent paints
72(1)
3.11.2.2 Spray fire protection
73(1)
3.11.2.3 Board fire protection
74(1)
3.11.3 Fire resistance test for protected members
74(1)
References
74(3)
4 Structural fire design principles for tall buildings
77(36)
4.1 Introduction
77(1)
4.2 Key tasks for structural fire design
77(2)
4.2.1 Building elements to be considered in design for fire
78(1)
4.2.2 Design of structural members in fire
78(1)
4.2.3 Design procedures
78(1)
4.3 Fire resistance rating for load-bearing structural members
79(1)
4.4 Design of concrete members in fire
79(9)
4.4.1 Thermal response of concrete in fire
82(1)
4.4.2 Spalling
82(1)
4.4.2.1 Types of spalling
82(1)
4.4.2.2 Prevention of spalling
83(3)
4.4.3 Simplified calculation methods for concrete members from EC2 EN 1992-1-2:2004/A1:2019 (E), 500°C isotherm method
86(2)
4.4.4 Concrete cover and protective layers
88(1)
4.5 Design of steel members in fire
88(5)
4.5.1 Thermal response of steel in fire
88(1)
4.5.2 The critical temperature method (BS5950, 2003 and EN 1993-1-2 2005)
88(1)
4.5.2.1 Assumptions
88(1)
4.5.2.2 Load ratio (degree of utilization)
89(1)
4.5.2.3 Critical temperature method for constrained members
89(1)
4.5.2.4 Critical temperature method for the compression and unconstrained members
90(2)
4.5.2.5 Column buckling resistance in fire
92(1)
4.5.3 Lateral torsional buckling of steel beams
92(1)
4.5.4 Beams in line with compartment walls
93(1)
4.6 Moment capacity approach (section method)
93(5)
4.6.1 Method of calculation
93(1)
4.6.1.1 Temperature profile
93(1)
4.6.1.2 Reduced strength of each element
94(1)
4.6.1.3 Reduced flexural strength calculation
94(1)
4.6.2 Case study for flexural capacity of reinforced concrete beams using moment capacity approach
95(2)
4.6.3 Flexural capacity of steel beams using moment capacity approach
97(1)
4.7 Design of composite beams under fire
98(3)
4.7.1 Resistance of shear connection in fire
98(2)
4.7.2 Effect of degree of shear connection
100(1)
4.7.3 Edge beams in fire
101(1)
4.7.4 Case study of composite beam design in fire
101(1)
4.8 Design of composite slabs in fire
101(6)
4.8.1 Membrane actions in fire
102(1)
4.8.2 Strength design composite slabs
102(1)
4.8.2.1 Calculation method based on plastic theory
103(1)
4.8.2.2 Calculation method considering membrane action
104(2)
4.8.3 Insulation criterion of composite slabs
106(1)
4.8.4 Deformation design of composite slabs in fire
107(1)
4.9 Design of post-tension slabs in fire
107(2)
4.10 Design of connections under fire
109(1)
4.11 Design of beam openings
109(1)
4.12 Summary of structural fire design methods
110(3)
4.12.1 Comparison of moment capacity method and critical temperature method
110(1)
4.12.2 Comparison of three major methods
110(1)
References
111(2)
5 Typical fire safety design strategy for tall buildings
113(36)
5.1 Introduction
113(1)
5.2 Fire safety design objectives and strategies for tall buildings
113(2)
5.2.1 Design objectives
114(1)
5.2.2 Design strategies
114(1)
5.2.3 Design process
114(1)
5.3 Design strategy for tall buildings in fire
115(2)
5.3.1 Prescriptive design
115(1)
5.3.2 Performance-based design
115(1)
5.3.2.1 Step 1: set fire safety goals and objectives
115(1)
5.3.2.1 Step 2: determine performance criteria
115(1)
5.3.2.2 Step 3: analysis of fire scenarios
116(1)
5.3.2.3 Step 4: protection strategy
116(1)
5.3.2.4 Step 5: determine whether the fire safety goals are met
116(1)
5.3.3 Summary
117(1)
5.4 Fire risk analysis for tall buildings
117(1)
5.4.1 Qualitative fire risk assessment
117(1)
5.4.2 Quantitative fire risk assessment
117(1)
5.5 Deterministic and probabilistic assessments to determine the worst-case fire scenario
118(1)
5.5.1 Deterministic approach
118(1)
5.5.2 Probabilistic approach
118(1)
5.6 Compartment design
119(6)
5.6.1 Key components in a compartment
120(1)
5.6.1.1 Fire doors design
121(1)
5.6.1.2 Compartment wall design
122(1)
5.6.1.3 Compartment floor design
122(1)
5.6.2 Fire stop
122(1)
5.6.3 Cavity barrier
123(1)
5.6.4 Fire damper
124(1)
5.6.5 Integrity of compartmentation in buildings
124(1)
5.6.5.1 Measures to accommodate movements of compartment walls due to fire
124(1)
5.6.5.2 Control movement of slab
125(1)
5.7 Evacuation route design
125(7)
5.7.1 Number of escapes routes and exits
126(1)
5.7.2 Design of exits
126(1)
5.7.3 Exit route
126(1)
5.7.4 Travel distance
126(2)
5.7.5 Staircases and elevators
128(1)
5.7.5.1 Protected staircases and elevators
128(1)
5.7.5.2 Fire lift lobby
128(2)
5.7.5.3 External escape stairs
130(1)
5.7.6 Phased/progressive evacuation
130(1)
5.7.7 Refuge
130(1)
5.7.8 Clear sign for evacuation
131(1)
5.7.9 Computational models for evacuation simulation
131(1)
5.8 Emergency vehicle and firefighter access
132(1)
5.8.1 Equipment for firefighting
132(1)
5.8.2 Firefighting lift, lobby, shaft, and stair
132(1)
5.9 Resisting fire spread through building envelope
132(2)
5.9.1 Resisting fire spread over external walls
133(1)
5.9.2 Fire-resisting design for glazing
134(1)
5.10 Fire detection, alarm, and communication system
134(2)
5.10.1 Central fire alarm system
135(1)
5.10.2 Smoke detections
135(1)
5.10.3 Smoke control
136(1)
5.11 Fire and smoke suppression system
136(1)
5.12 Comparison for fire protection system for tall buildings across the world
137(1)
5.13 Case study of fire safety deign for Burj Khalifa
137(6)
5.13.1 Evacuation and refuge
141(1)
5.13.2 Firefight access
142(1)
5.13.3 Staircase and elevator
142(1)
5.13.4 Alarm and warning system
142(1)
5.13.5 Fire suppression
142(1)
5.13.6 Special water supply and pumping system
142(1)
5.14 Case study: structural fire design of the Shard
143(3)
5.14.1 Introduction of the project
144(1)
5.14.2 Structural system
144(1)
5.14.3 Determine the worst-case fire scenarios
144(1)
5.14.4 Design for fire resistance
145(1)
5.15 Structural framing and structural system
146(3)
References
147(2)
6 Fire analysis and modeling
149(34)
6.1 Introduction
149(1)
6.2 Determining compartment fire
149(6)
6.2.1 Simplified models from Eurocode
149(1)
6.2.1.1 Compartment fires
150(1)
6.2.1.2 Localized fires
150(1)
6.2.2 Advanced models
150(1)
6.2.2.1 Zone models
150(4)
6.2.2.2 Limitations of zone modeling
154(1)
6.2.2.3 Computational fluid dynamics (CFD) fire modeling
154(1)
6.3 Determining member temperature
155(2)
6.3.1 Simplified temperature increase models from Eurocode
155(1)
6.3.2 Heat transfer using finite element method
156(1)
6.3.2.1 Theoretical principles
156(1)
6.3.2.2 Analysis software and modeling example
157(1)
6.4 Determining structural response of structural members in fire
157(10)
6.4.1 Multi-physics fire analysis (thermal mechanical coupled analysis)
158(1)
6.4.1.1 Abaqus®
158(1)
6.4.1.2 ADINA
158(2)
6.4.2 Sequentially coupled thermal-stress analysis
160(1)
6.4.2.1 Sequentially coupled thermal-stress analysis using Abaqus®
160(1)
6.4.2.2 Sequentially coupled thermal-stress analysis using ANSYS
161(3)
6.4.2.3 Partial thermal-mechanical analyses in OpenSees
164(1)
6.4.2.4 Codified thermal-mechanical coupled analysis
165(2)
6.5 Probabilistic method for fire safety design
167(10)
6.5.1 Reliability-based structural fire design and analysis
167(1)
6.5.1.1 The basic reliability design principles
168(1)
6.5.1.2 Reliability-based design and analysis procedure
169(2)
6.5.1.3 Case study for reliability analysis for individual members
171(1)
6.5.1.4 Case study for reliability analysis for a whole building
172(2)
6.5.2 Fire fragility functions
174(1)
6.5.2.3 Compartment-level fragility function
175(1)
6.5.2.4 Building-level fragility function
175(1)
6.5.3 Other probabilistic approaches in fire safety design
176(1)
6.6 Major fire analysis software
177(6)
6.6.1 Ozone software
177(1)
6.6.2 CFAST
178(1)
6.6.3 FDS
178(1)
6.6.4 LS-DYNA
178(1)
6.6.5 OpenSees
178(2)
References
180(3)
7 Preventing fire-induced collapse of tall buildings
183(22)
7.1 Introduction
183(1)
7.2 Design objective and functional requirement for structural stability in fire
183(1)
7.3 Importance of collapse prevention of tall buildings in fire
184(1)
7.4 Collapse mechanism of tall buildings in fire
184(11)
7.4.1 Factors affecting thermal response and failure mechanism of individual members
185(1)
7.4.2 Behavior and failure mechanism of steel beams in fire
186(1)
7.4.2.1 Local buckling of beams in connection area
186(1)
7.4.2.2 Excessive deflection
187(1)
7.4.3 Behavior and failure mechanism of slabs in fire
188(1)
7.4.3.1 Membrane actions of slabs
188(1)
7.4.3.2 Effect of different fire scenarios in composite slabs
189(1)
7.4.3.3 Other research in composite slabs in fire
190(1)
7.4.4 Behavior and failure mechanism of steel column in fire
191(1)
7.4.4.1 Change of column force in fire
191(2)
7.4.4.2 Out plane bending of columns
193(1)
7.4.4.3 Effect of the slenderness ratios
194(1)
7.4.5 Behavior of connections
194(1)
7.4.6 Behavior and failure mechanism of concrete column in fire
195(1)
7.5 Whole-building behavior of tall buildings in fire
195(7)
7.5.1 Research of Fu (2016b)
195(1)
7.5.2 Twin Tower collapse (WTC1 and WTC2)
195(1)
7.5.2.1 Structural framing for WTC1
196(1)
7.5.2.2 Reason for the collapse of WTC1
196(1)
7.5.3 WTC7
197(1)
7.5.3.1 Structural framing for WTC7
197(1)
7.5.3.2 Reason for the collapse of WTC7
198(1)
7.5.4 Cardington test
199(1)
7.5.4.1 Severity of the fire
200(1)
7.5.4.2 Structural framing
200(1)
7.5.5 Other research in whole building behavior
201(1)
7.6 Overall building stability system design for fire
202(1)
7.6.1 Bracing system
202(1)
7.6.2 Core wall design
202(1)
7.7 Methods for mitigating collapse of buildings in fire
202(3)
References
203(2)
8 New technologies and machine learning in fire safety design
205(10)
8.1 Introduction
205(1)
8.2 New technologies in fire safety
205(2)
8.2.1 PAVA alarm systems
205(1)
8.2.2 IOT in fire safety
206(1)
8.2.2.1 Fire safety sensors and BMS
206(1)
8.2.2.2 Fire suppression
206(1)
8.3 Machine learning in fire safety design
207(8)
8.3.1 Machine learning and its application in the construction industry
208(1)
8.3.2 Problems experienced in the conventional structural fire analysis approach
208(1)
8.3.3 Predicting failure patterns of simple steel-framed buildings in fire
209(1)
8.3.3.1 Define failure pattern
210(1)
8.3.3.2 Dataset generation using the Monte Carlo simulation and random sampling
210(1)
8.3.3.3 Training and testing
210(1)
8.3.3.4 Failure pattern prediction
211(1)
8.3.3.5 Fire safety design and progressive collapse potential check based on prediction results
211(1)
8.3.4 Predicting and preventing fires with machine learning
211(1)
8.3.5 Machine learning of fire hazard model simulations for use in probabilistic safety assessments at nuclear power plants
211(1)
8.3.6 Learning algorithms and programming language
212(1)
8.3.6.1 Learning algorithms
212(1)
8.3.6.2 Programming language
212(1)
References
212(3)
9 Post-fire damage assessment
215(8)
9.1 Introduction
215(1)
9.2 Post-fire damage assessment
215(8)
9.2.1 Post-fire damage assessment of concrete structure
215(1)
9.2.1.1 Visual inspection
215(1)
9.2.1.2 Schmidt rebound hammer
216(1)
9.2.1.3 Petrographic analysis
216(1)
9.2.1.4 Spectrophotometer investigations
216(1)
9.2.1.5 Reinforcement sampling
217(1)
9.2.1.6 Compression test
217(1)
9.2.2 Post-fire damage assessment of structural steel members
218(1)
9.2.2.1 Methods for post-fire damage assessment
218(1)
9.2.2.2 Nondestructive post-fire damage assessment of structural steel members using the Leeb harness method
218(3)
References
221(2)
Index 223
Dr. Feng Fu worked for several world-leading consultancy companies including WSP Group, where he was one of the key team members in structural fire design of the tallest building in Western Europe, the Shard. He serves for two building design standard committees of the American Society of Civil Engineers, and also acts as an associate editor and editorial board member for three international journals, He published more than 100 technical papers and three textbooks including Structural Analysis and Design to Prevent Disproportionate Collapse (CRC Press, 2016).