Atjaunināt sīkdatņu piekrišanu

E-grāmata: First Course in Sobolev Spaces

  • Formāts: 607 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 19-Oct-2009
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470411695
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 113,68 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 607 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 19-Oct-2009
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470411695
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Sobolev spaces are a fundamental tool in the modern study of partial differential equations. In this book, Leoni takes a novel approach to the theory by looking at Sobolev spaces as the natural development of monotone, absolutely continuous, and BV functions of one variable. In this way, the majority of the text can be read without the prerequisite of a course in functional analysis. The first part of this text is devoted to studying functions of one variable. Several of the topics treated occur in courses on real analysis or measure theory. Here, the perspective emphasizes their applications to Sobolev functions, giving a very different flavor to the treatment. This elementary start to the book makes it suitable for advanced undergraduates or beginning graduate students. Moreover, the one-variable part of the book helps to develop a solid background that facilitates the reading and understanding of Sobolev functions of several variables. The second part of the book is more classical, although it also contains some recent results. Besides the standard results on Sobolev functions, this part of the book includes chapters on BV functions, symmetric rearrangement, and Besov spaces. The book contains over 200 exercises.
Preface ix
Acknowledgments xv
Part
1. Functions of One Variable
Monotone Functions
3(36)
Continuity
3(5)
Differentiability
8(31)
Functions of Bounded Pointwise Variation
39(34)
Pointwise Variation
39(16)
Composition in BPV (I)
55(4)
The Space BPV (I)
59(7)
Banach Indictrix
66(7)
Absolutely Continuous Functions
73(42)
AC (I) Versus BPV (I)
73(21)
Chain Rule and Change of Variables
94(13)
Singular Functions
107(8)
Curves
115(40)
Rectifiable Curves and Arclength
115(15)
Frechet Curves
130(4)
Curves and Hausdorff Measure
134(12)
Jordan's Curve Theorem
146(9)
Lebesgue-Stieltjes Measures
155(32)
Radon Measures Versus Increasing Functions
155(6)
Signed Borel Measures Versus BPV (I)
161(5)
Decomposition of Measures
166(15)
Integration by Parts and Change of Variables
181(6)
Decreasing Rearrangement
187(28)
Definition and First Properties
187(15)
Absolute Continuity of u
202(7)
Derivative of u
209(6)
Functions of Bounded Variation and Sobolev Functions
215(16)
BV (Ω) Versus BPV (Ω)
215(7)
Sobolve Functions Versus Absolutely Continuous Functions
222(9)
Part
2. Functions of Several Variables
Absolutely Continuous Functions and Change of Variables
231(24)
The Euclidean Space RN
231(3)
Absolutely Continuous Functions of Several Variables
234(8)
Change of Variables for Multiple Integrals
242(13)
Distributions
255(24)
The Spaces DK (Ω), D (Ω), and D (Ω)
255(9)
Order of a Distribution
264(2)
Derivatives of Distributions and Distributions as Derivatives
266(9)
Convolutions
275(4)
Sobolev Spaces
279(32)
Definition and Main Properties
279(4)
Density of Smooth Functions
283(10)
Absolute Continuity on Lines
293(5)
Duals and Weak Convergence
298(7)
A Characterization of W1, P (Ω)
305(6)
Sobolev Spaces: Embeddings
311(38)
Embeddings: 1≤ p < N
312(16)
Embeddings: p=N
328(7)
Embeddings: p>N
335(6)
Lipschitz Functions
341(8)
Sobolev Spaces: Further Properties
349(28)
Extension Domains
349(10)
Poincare Inequalities
359(18)
Functions of Bounded Variation
377(38)
Definition and Main Properties
377(3)
Approximation by Smooth Functions
380(6)
Bounded Pointwise Variation on Lines
386(11)
Coarea Formula for BV Functions
397(4)
Embeddings and Isoperimetric Inequalities
401(7)
Density of Smooth Sets
408(5)
A Characterization of BV(Ω)
413(2)
Besov Spaces
415(36)
Besov Spaces Bs, Pθ,0>s&get1
415(4)
Dependence of Bs, Pθ on s
419(2)
The Limit of Bs, Pθ as s→0+ and s→1-
421(4)
Dependence of Bs, Pθ on θ
425(4)
Dependence of Bs, Pθ on S and P
429(8)
Embedding of Bs, Pθ into Lq
437(5)
Embedding of W1, P into Bt, q
442(6)
Besov Spaces and Fractional Sobolev Spaces
448(3)
Sobolev Spaces: Traces
451(26)
Traces of Functions in W1,(Ω)
451(13)
Traces of Functions in BV (Ω)
464(1)
Traces of Functions in W1, p (Ω), p>1
465(10)
A Characterization of Wo1, p (Ω) in Terms of Traces
475(2)
Sobolev Spaces: Symmetrization
477(16)
Symmetrization in LP Spaces
477(5)
Symmetrization of Lipschitz Functions
482(2)
Symmetrization of Piecewise Affine Functions
484(3)
Symmetrization in W1, p and BV
487(6)
Appendix A. Functional Analysis
493(14)
Metric Spaces
493(1)
Topological Spaces
494(3)
Topological Vector Spaces
497(4)
Normed Spaces
501(2)
Weak Topologies
503(3)
Hilbert Spaces
506(1)
Appendix B. Measures
507(36)
Outer Measures and Measures
507(4)
Measurable and Integrable Functions
511(8)
Integrals Depending on a Parameter
519(1)
Product Spaces
520(2)
Radon-Nikodym's and Lebesgue's Decomposition Theorems
522(1)
Signed Measures
523(3)
LP Spaces
526(8)
Modes of Convergence
534(2)
Radon Measures
536(2)
Covering Theorems in RN
538(5)
Appendix C. The Lebesgue and Hausdorff Measures
543(38)
The Lebesgue Measure
543(2)
The Brunn-Minkowski Inequality and Its Applications
545(5)
Convolutions
550(2)
Mollifiers
552(8)
Differentiable Functions on Arbitrary Sets
560(4)
Maximal Functions
564(4)
Anisotropic LP Spaces
568(4)
Hausdorff Measures
572(9)
Appendix D. Notes
581(6)
Appendix E. Notation and List of Symbols
587(6)
Bibliography 593(10)
Index 603