Atjaunināt sīkdatņu piekrišanu

E-grāmata: First Principles Modelling of Shape Memory Alloys: Molecular Dynamics Simulations

  • Formāts: PDF+DRM
  • Sērija : Springer Series in Materials Science 163
  • Izdošanas datums: 31-Jul-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642286193
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Springer Series in Materials Science 163
  • Izdošanas datums: 31-Jul-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642286193

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and covers thermodynamical, micro-mechanical and crystallographical aspects. It addresses scientists in these research fields and their students.

This book reviews simulation studies that model shape memory alloys. The authors utilize contemporary methodology for molecular dynamics simulation experiments to show how microscale dynamics may produce characteristic macroscopic material properties.
1 Preparations
1(34)
1.1 An Introduction to Shape Memory Alloys
1(8)
1.1.1 Thermo-Mechanical Phenomena
1(2)
1.1.2 Martensitic Transformations
3(1)
1.1.3 Microstructures
4(2)
1.1.4 Scales
6(3)
1.2 Crystallographic Theory
9(2)
1.3 Thermodynamics
11(17)
1.3.1 Phase Stability Criterion
11(7)
1.3.2 Nucleation and Hysteresis
18(3)
1.3.3 Dynamics of Atomic Assemblies
21(2)
1.3.4 Statistical Thermodynamics
23(5)
1.4 Engineering Models of SMA
28(1)
References
29(6)
2 The Method of Molecular Dynamics Simulations
35(24)
2.1 Interaction Models
35(2)
2.2 Numerics
37(16)
2.2.1 Accuracy Issues
37(2)
2.2.2 Integration Schemes
39(2)
2.2.3 Non-Dimensionalisation
41(1)
2.2.4 Thermostats
42(3)
2.2.5 Periodic Boundary Conditions
45(2)
2.2.6 Parrinello-Rahman
47(2)
2.2.7 Parallelisation
49(3)
2.2.8 MD Simulation Computer Program
52(1)
2.3 Post-Processing
53(2)
References
55(4)
3 2D Model Material
59(28)
3.1 The Model Material
59(5)
3.2 Infinite and Perfect Single Crystals
64(10)
3.2.1 Harmonic Limit: Linearised Equations of Motion
64(3)
3.2.2 Phase Stability of 2D Lattices
67(4)
3.2.3 Entropic Stabilisation of Austenite
71(3)
3.3 Crystallographic Theory
74(1)
3.4 Thermo-Mechanical Properties
74(10)
3.4.1 Individual Crystallites
74(3)
3.4.2 Chains of Crystallites
77(7)
References
84(3)
4 Lattice Transformations in 2D Crystals
87(64)
4.1 Temperature-Induced Transformations
87(13)
4.1.1 Strip-Shaped Rectangles
88(2)
4.1.2 Quad-Shaped Rectangles
90(8)
4.1.3 Substrate Layers
98(2)
4.2 Transformation Dynamics and Microstructure
100(2)
4.3 Nucleation of Martensite
102(19)
4.3.1 Simulation Setup
104(1)
4.3.2 Simulation Result
105(3)
4.3.3 Nucleation Centres
108(2)
4.3.4 Frequency Analysis
110(8)
4.3.5 Phase Space Analysis
118(2)
4.3.6 Entropic Nucleation Barrier
120(1)
4.4 Tensile Testing in the Pseudo-Elastic Regime
121(13)
4.4.1 Simulation Procedure
121(2)
4.4.2 Load Control Mode
123(6)
4.4.3 Displacement Control Mode
129(5)
4.5 Tensile Testing in the Pseudo-Plastic Regime
134(3)
4.6 Transformation Cycles
137(8)
4.6.1 Procedure
137(2)
4.6.2 Reverse Transformation of the 160,000-Atom Quad
139(1)
4.6.3 Cyclic Transformation Processes
139(6)
4.7 Hysteresis and Functional Fatigue
145(3)
4.7.1 Thermodynamic Hysteresis
145(1)
4.7.2 Functional Fatigue
146(1)
4.7.3 Predicted and Observed Hysteresis
146(2)
References
148(3)
5 Lattice Transformations in 3D Crystals
151(14)
5.1 3D Lennard-Jones Crystals
151(6)
5.1.1 Model Material
151(2)
5.1.2 Procedure
153(1)
5.1.3 Results
154(3)
5.2 Zirconium Crystal
157(5)
5.2.1 Model
157(2)
5.2.2 Simulation Procedure
159(1)
5.2.3 Results
160(2)
5.3 Conclusions
162(1)
References
162(3)
6 Conclusions
165(4)
Reference
168(1)
Index 169