Atjaunināt sīkdatņu piekrišanu

E-grāmata: Flexible AC Transmission Systems (FACTS): Newton Power-Flow Modeling of Voltage-Sourced Converter-Based Controllers

(Delhi Technological University, India)
  • Formāts: 319 pages
  • Izdošanas datums: 03-Sep-2018
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781498756211
  • Formāts - EPUB+DRM
  • Cena: 57,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 319 pages
  • Izdošanas datums: 03-Sep-2018
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781498756211

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Flexible AC Transmission Systems (FACTS): Newton Power-Flow Modeling of Voltage-Sourced Converter-Based Controllers introduces different voltage-sourced converter (VSC)-based FACTS controllers and VSC-based high-voltage direct current (VSC-HVDC) systems and their working principles, explaining how FACTS controllers exchange real and reactive power with systems.

Subsequently, the book:











Describes the NewtonRaphson method and its application for solving the power-flow problem Presents the Newton power-flow modeling of the static synchronous series compensator (SSSC), unified power-flow controller (UPFC), interline power-flow controller (IPFC), generalized unified power-flow controller (GUPFC), and static synchronous compensator (STATCOM), accommodating the practical device constraint limits (because of the unique modeling strategy, the existing Newton power-flow codes can be reused) Develops a unified Newton power-flow model of AC systems incorporating multiterminal VSC-HVDC systems with pulse-width modulation (PWM) control schemes, directly yielding the VSC modulation indices from the power-flow solution Provides numerous case studies for validation of Newton power-flow models, elaborating on the occurrences and checking of unrealistic power-flow solutions in isolated cases Includes detailed derivations of all the difficult formulae as well as solved problems on typical VSC-based FACTS controllers

Flexible AC Transmission Systems (FACTS): Newton Power-Flow Modeling of Voltage-Sourced Converter-Based Controllers assumes at least an undergraduate-level understanding of engineering mathematics, network analysis, electrical machines, electrical power systems, and power electronics. Thus, the book provides a valuable reference for practitioners as well as senior-undergraduate and graduate students in electrical engineering and electrical power systems.
Preface xiii
Author xvii
List of Abbreviations xix
List of Symbols xxi
Chapter 1 Facts And Facts Controllers 1(32)
1.1 Introduction
1(1)
1.2 The STATCOM
2(2)
1.3 The SSSC
4(3)
1.4 The UPFC
7(9)
1.5 The IPFC And The GUPFC
16(4)
1.6 VSC-HVDC Systems
20(1)
1.7 Power Flow Models Of Facts Controllers And VSC-HVDC Systems
21(3)
1.8 Organization Of The Book
24(3)
1.9 Solved Problems
27(6)
Chapter 2 Introduction To The Newton-Raphson Method And The Power Flow Problem 33(30)
2.1 Introduction
33(1)
2.2 The Newton-Raphson Method
33(6)
2.3 The Power Flow Problem
39(1)
2.4 Power Flow Equations
40(3)
2.5 The Classification Of Buses
43(3)
2.6 Solution Of The Power Flow Problem
46(7)
2.7 The Jacobian Matrix
53(6)
2.8 Power Flow Solution: The Generalized Form
59(2)
2.9 Summary
61(2)
Chapter 3 Newton Power Flow Model Of The Static Synchronous Series Compensator 63(40)
3.1 Introduction
63(1)
3.2 SSSC Model For Newton Power Flow Analysis
64(3)
3.3 Power Flow Equations In The Proposed SSSC Model
67(3)
3.4 Implementation In Newton Power Flow Analysis
70(7)
3.4.1 SSSC Is Operating Within Its Operational Constraints
73(3)
3.4.2 Device Limit Constraints Of The SSSC Are Violated
76(1)
3.5 Inclusion Of SSSC Switching Losses
77(1)
3.6 Case Studies And Results
78(24)
3.6.1 Studies With Ideal SSSCS Without Any Device Limit Constraints
79(3)
3.6.1.1 IEEE 118-Bus System
79(1)
3.6.1.2 IEEE 300-Bus System
80(2)
3.6.2 Studies With Practical SSSCS Without Any Device Limit Constraints
82(5)
3.6.2.1 IEEE 118-Bus System
82(2)
3.6.2.2 IEEE 300-Bus System
84(3)
3.6.3 Studies With Practical SSSCS Including Device Limit Constraints
87(15)
3.7 Summary
102(1)
Chapter 4 Newton Power Flow Model Of The Unified Power Flow Controller 103(36)
4.1 Introduction
103(1)
4.2 UPFC Model For Newton Power Flow Analysis
104(4)
4.3 Power Flow Equations In The Proposed UPFC Model
108(3)
4.4 Implementation In Newton Power Flow Analysis
111(5)
4.5 Accommodation Of UPFC Device Limit Constraints
116(2)
4.6 Selection Of Initial Conditions
118(1)
4.7 Case Studies And Results
119(19)
4.7.1 Studies Of UPFCS Without Any Device Limit Constraints
119(3)
4.7.1.1 Case I: IEEE 118-Bus System
119(1)
4.7.1.2 Case II: IEEE 300-Bus System
119(3)
4.7.2 Studies Of UPFCS With Device Limit Constraints
122(16)
4.8 Summary
138(1)
Chapter 5 Newton Power Flow Model Of The Interline Power Flow Controller 139(32)
5.1 Introduction
139(1)
5.2 IPFC Model For Newton Power Flow Analysis
140(5)
5.3 Power Flow Equations In The Proposed IPFC Model
145(3)
5.4 Implementation In Newton Power Flow Analysis
148(4)
5.5 Accommodation Of IPFC Device Limit Constraints
152(2)
5.6 Selection Of Initial Conditions
154(1)
5.7 Case Studies And Results
154(15)
5.7.1 Studies Of IPFCS Without Any Device Limit Constraints
154(3)
5.7.1.1 IEEE 118-Bus System
154(1)
5.7.1.2 IEEE 300-Bus System
154(3)
5.7.2 Studies Of IPFCS With Device Limit Constraints
157(33)
5.7.2.1 IEEE 118-Bus System
157(2)
5.7.2.2 IEEE 300-Bus System
159(10)
5.8 Summary
169(2)
Chapter 6 Newton Power Flow Model Of The Generalized Unified Power Flow Controller 171(50)
6.1 Introduction
171(1)
6.2 GUPFC Model For Newton Power Flow Analysis
172(6)
6.3 Power Flow Equations In Proposed GUPFC Model
178(4)
6.4 Implementation In Newton Power Flow Analysis
182(4)
6.5 Accommodation Of GUPFC Device Limit Constraints
186(4)
6.6 Selection Of Initial Conditions
190(1)
6.7 Case Studies And Results
190(29)
6.7.1 Studies Of GUPFCS Without Any Device Limit Constraints
190(3)
6.7.2 Studies Of GUPFCS With Device Limit Constraints
193(26)
6.8 Summary
219(2)
Chapter 7 Newton Power Flow Model Of The Static Compensator 221(26)
7.1 Introduction
221(1)
7.2 STATCOM Model For Newton Power Flow Analysis
222(3)
7.3 Power Flow Equations In The Proposed STATCOM Model
225(1)
7.4 Implementation In Newton Power Flow Analysis
226(7)
7.4.1 Application Of Decoupling
230(1)
7.4.2 Decoupled Power Flow Equations In The Proposed Model
231(2)
7.5 Accommodation Of STATCOM Device Limit Constraints
233(2)
7.6 Selection Of Initial Conditions
235(1)
7.7 Case Studies And Results
235(9)
7.7.1 Studies Of STATCOMs Without Any Device Limit Constraints
236(5)
7.7.1.1 Case I: Control Of Bus Voltage
236(3)
7.7.1.2 Case II: Control Of Reactive Power Delivered By The STATCOM
239(2)
7.7.2 Studies Of STATCOMs With Device Limit Constraints
241(3)
7.8 Summary
244(3)
Chapter 8 Newton Power Flow Modeling Of Voltage- Sourced Converter Based HVDC Systems 247(16)
8.1 Introduction
247(1)
8.2 Modeling Of The PTPVSC-HVDC
248(6)
8.3 Newton Power Flow Equations Of The VSC-HVDC System
254(1)
8.4 Case Studies And Results
255(6)
8.4.1 Case Study Of IEEE 300-Bus Test System Incorporated With A Three-Terminal VSC-HVDC Network
256(5)
8.4.1.1 Study I: Slave Converters In PQ Control Mode
256(1)
8.4.1.2 Study II: Slave Converters In PV Control Mode
256(2)
8.4.1.3 Study IIII: Modulation Index Of Master Converter Specified (Instead Of DC Side Voltage)
258(3)
8.5 Summary
261(2)
Appendix: Derivations Of Difficult Formulae 263(14)
References 277(8)
Index 285
Suman Bhowmick, PhD, is an associate professor of electrical engineering in the Department of Electrical Engineering at Delhi Technological University (formerly Delhi College of Engineering), India. He has more than 23 years of experience in both industry and academia. He is also a member of the Institute of Electrical and Electronics Engineers (IEEE). His research interests include flexible AC transmission systems, voltage-sourced converter (VSC)-based high-voltage direct current (HVDC) systems, and their control.