Atjaunināt sīkdatņu piekrišanu

Flexible Energy Conversion and Storage Devices [Hardback]

Edited by , Edited by
  • Formāts: Hardback, 512 pages, height x width x depth: 249x173x25 mm, weight: 1111 g
  • Izdošanas datums: 05-Sep-2018
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 3527342532
  • ISBN-13: 9783527342532
  • Hardback
  • Cena: 196,40 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 512 pages, height x width x depth: 249x173x25 mm, weight: 1111 g
  • Izdošanas datums: 05-Sep-2018
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 3527342532
  • ISBN-13: 9783527342532
Provides in-depth knowledge of flexible energy conversion and storage devices-covering aspects from materials to technologies

Written by leading experts on various critical issues in this emerging field, this book reviews the recent progresses on flexible energy conversion and storage devices, such as batteries, supercapacitors, solar cells, and fuel cells. It introduces not only the basic principles and strategies to make a device flexible, but also the applicable materials and technologies, such as polymers, carbon materials, nanotechnologies and textile technologies. It also discusses the perspectives for different devices.

Flexible Energy Conversion and Storage Devices contains chapters, which are all written by top researchers who have been actively working in the field to deliver recent advances in areas from materials syntheses, through fundamental principles, to device applications. It covers flexible all-solid state supercapacitors; fiber/yarn based flexible supercapacitors; flexible lithium and sodium ion batteries; flexible diversified and zinc ion batteries; flexible Mg, alkaline, silver-zinc, and lithium sulfur batteries; flexible fuel cells; flexible nanodielectric materials with high permittivity for power energy storage; flexible dye sensitized solar cells; flexible perovskite solar cells; flexible organic solar cells; flexible quantum dot-sensitized solar cells; flexible triboelectric nanogenerators; flexible thermoelectric devices; and flexible electrodes for water-splitting.

-Covers the timely and innovative field of flexible devices which are regarded as the next generation of electronic devices -Provides a highly application-oriented approach that covers various flexible devices used for energy conversion and storage -Fosters an understanding of the scientific basis of flexible energy devices, and extends this knowledge to the development, construction, and application of functional energy systems -Stimulates and advances the research and development of this intriguing field

Flexible Energy Conversion and Storage Devices is an excellent book for scientists, electrochemists, solid state chemists, solid state physicists, polymer chemists, and electronics engineers.
Preface xiii
1 Flexible All-Solid-State Supercapacitors and Micro-Pattern Supercapacitors 1(36)
Yuqing Liu
Chen Zhao
Shayan Seyedin
Joselito Razal
Jun Chen
1.1 Introduction
1(3)
1.2 Potential Components and Device Architecture for Flexible Supercapacitors
4(6)
1.2.1 Flexible Electrode Materials
5(2)
1.2.1.1 Carbon Materials
5(1)
1.2.1.2 Conducting Polymers
6(1)
1.2.1.3 Composite Materials
7(1)
1.2.2 Solid-State Electrolytes
7(1)
1.2.3 Device Architecture of Flexible Supercapacitor
8(2)
1.3 Flexible Supercapacitor Devices with Sandwiched Structures
10(8)
1.3.1 Freestanding Films Based Flexible Devices
10(4)
1.3.2 Flexible Substrate Supported Electrodes Based Devices
14(4)
1.4 Flexible Micro-Supercapacitor Devices with Interdigitated Architecture
18(9)
1.4.1 In situ Synthesis of Active Materials on Pre-Patterned Surfaces
18(3)
1.4.2 Direct Printing of Active Materials
21(3)
1.4.3 Patterning of Well-Developed Film Electrodes
24(3)
1.5 Performance Evaluation and Potential Application of Flexible Supercapacitors
27(5)
1.5.1 Performance Evaluation of Flexible Supercapacitors
28(1)
1.5.2 Integration of Flexible Supercapacitors
29(3)
1.6 Conclusions and Perspectives
32(1)
References
32(5)
2 Fiber/Yarn-Based Flexible Supercapacitor 37(30)
Yang Huang
Chunyi Zhi
2.1 Introduction
37(3)
2.2 Supercapacitor with Intrinsic Conductive Fiber/Yarn
40(11)
2.2.1 Carbolic Fiber/Yarn-Based Supercapacitor
41(3)
2.2.2 Metallic Fiber/Yarn-Based Supercapacitor
44(4)
2.2.3 Hybrid Conductive Fiber/Yarn-Based Supercapacitor
48(3)
2.3 Supercapacitors with Intrinsic Nonconductive Fiber/Yarn
51(6)
2.3.1 Fiber/Yarn Modified by Carbon Materials
52(2)
2.3.2 Fiber/Yarn Modified by Metallic Materials
54(3)
2.4 Integrated Electronic Textiles
57(4)
2.5 Conclusion and Outlook
61(1)
References
62(5)
3 Flexible Lithium Ion Batteries 67(30)
Xuli Chen
Yingying Ma
3.1 Overview of Lithium Ion Battery
67(6)
3.1.1 General Principle
67(3)
3.1.2 Cathode
70(1)
3.1.2.1 LiCoO2 with Layered Structure
70(1)
3.1.2.2 LiMn2O4 with a Spinel Structure
70(1)
3.1.2.3 LiFePO4 with an Olivine Structure
70(1)
3.1.3 Anode
71(1)
3.1.3.1 Carbonaceous Anodes
71(1)
3.1.3.2 Metal Alloy Anodes
71(1)
3.1.4 Electrolyte
72(1)
3.2 Planar-Shaped Flexible Lithium Ion Batteries
73(14)
3.2.1 Bendable Planar Lithium Ion Batteries
73(11)
3.2.1.1 Bendable Carbon-Based Planar Lithium Ion Battery
73(4)
3.2.1.2 Thin Metal Material-Based Lithium Ion Battery
77(2)
3.2.1.3 Polymer-Based Lithium Ion Battery
79(3)
3.2.1.4 Special Structural Design-Based Flexible Lithium-Ion Battery
82(2)
3.2.2 Stretchable Planar Flexible Lithium Ion Batteries
84(3)
3.3 Fiber-Shaped Flexible Lithium Ion Batteries
87(7)
3.3.1 Bendable Fiber-Shaped Lithium Ion Battery
87(6)
3.3.2 Stretchable Fiber-Shaped Lithium Ion Battery
93(1)
3.4 Perspective
94(1)
References
95(2)
4 Flexible Sodium Ion Batteries: From Materials to Devices 97(30)
Shengyang Dong
Ping Nie
Xiaogang Zhang
4.1 Introduction to Flexible Sodium Ion Batteries (SIBs)
97(1)
4.2 The Key Scientific Issues of Flexible SIBs
98(3)
4.2.1 Design of Advanced Active-Materials
99(1)
4.2.2 Design of Flexible Substrates and Electrodes
99(2)
4.2.3 Developing Novel Processing Technologies
101(1)
4.3 Design of Advanced Materials for Flexible SIBs
101(16)
4.3.1 Inorganic Anode Materials for Flexible SIBs
101(9)
4.3.2 Inorganic Cathode Materials for Flexible SIBs
110(4)
4.3.3 Organic Materials for Flexible SIBs
114(1)
4.3.4 Other Major Components for Flexible SIBs (Electrolyte, Separators, etc.)
115(2)
4.4 Design of Full Cell for Flexible SIBs
117(4)
4.5 Summary and Outlook
121(2)
References
123(4)
5 1D and 2D Flexible Carbon Matrix Materials for Lithium-Sulfur Batteries 127(28)
Tianyi Wang
Yushu Liu
Dawei Su
Guoxiu Wang
5.1 Introduction
127(1)
5.2 The Working Mechanism and Challenges of Li-S Batteries
128(1)
5.3 Flexible Cathode Hosts for Lithium-Sulfur Batteries
129(9)
5.4 Electrolyte Membranes for Flexible Li-S Batteries
138(6)
5.4.1 Solid Polymer Electrolytes for Flexible Li-S Batteries
139(3)
5.4.2 Gel Polymer Electrolytes for Flexible Li-S Batteries
142(1)
5.4.3 Composite Polymer Electrolytes for Flexible Li-S Batteries
143(1)
5.5 Separator for Flexible Li-S Batteries
144(4)
5.6 Summary
148(1)
References
149(6)
6 Flexible Electrodes for Lithium-Sulfur Batteries 155(28)
Jia-Qi Huang
Meng Zhao
Rui Xu
Qiang Zhang
6.1 Introduction
155(1)
6.2 Lithium-Sulfur Battery and Flexible Cathode
156(1)
6.2.1 Lithium-Sulfur Battery
156(1)
6.2.2 Flexible Cathode for Lithium-Sulfur Battery
156(1)
6.3 The Flexible Cathode of Lithium-Sulfur Battery
157(20)
6.3.1 Flexible Cathode Based on One-dimensional Materials
157(10)
6.3.1.1 Flexible Cathode Based on CNTs
157(6)
6.3.1.2 Flexible Cathode Based on Carbon Nanofibers
163(3)
6.3.1.3 Flexible Cathode Based on Polymer Fibers
166(1)
6.3.2 Flexible Cathode Based on Two-dimensional Materials
167(5)
6.3.2.1 Flexible Cathode Based on Graphene Paper
167(2)
6.3.2.2 Flexible Cathode Based on Graphene Foam
169(3)
6.3.3 Flexible Cathode Based on Three-dimensional Materials
172(12)
6.3.3.1 Flexible Cathode Based on Three-dimensional Carbon Foam Materials
172(2)
6.3.3.2 Flexible Cathode Based on Carbon/Binder Composites Materials
174(2)
6.3.3.3 Flexible Cathode Based on Three-dimensional Metal Materials
176(1)
6.4 Summary and Prospect
177(1)
References
178(5)
7 Flexible Lithium-Air Batteries 183(32)
Qing-Chao Liu
Zhi-Wen Chang
Kai Chen
Xin-Bo Zhang
7.1 Motivation for the Development of Flexible Lithium-Air Batteries
183(1)
7.2 State of the Art for Flexible Lithium-Air Batteries
184(22)
7.2.1 Overview of Flexible Energy Storage and Conversion Devices
184(1)
7.2.2 Overview of Flexible Lithium-Air Batteries
185(5)
7.2.2.1 Similarities Between Coin Cell/Swagelok Batteries with Flexible Battery
187(1)
7.2.2.2 Differences Between Coin Cell/Swagelok Batteries with Flexible Battery
188(2)
7.2.3 Current Status of Flexible Lithium-Air Battery
190(26)
7.2.3.1 Planar Battery
190(9)
7.2.3.2 Cable-type Battery
199(3)
7.2.3.3 Woven-type Battery Pack
202(1)
7.2.3.4 Battery Array Pack
203(3)
7.3 Challenges and Future Work on Flexible Lithium-Air Batteries
206(1)
7.4 Concluding Remarks
207(1)
References
208(7)
8 Nanodielectric Elastomers for Flexible Generators 215(24)
Li-Juan Yin
Zhi-Min Dang
8.1 Introduction
215(1)
8.2 Electro-Mechanical Principles
216(2)
8.2.1 Electro-Mechanical Conversion
216(1)
8.2.2 Equations of DE Generators
217(1)
8.3 Increasing the Performance of Dielectric Elastomers from the Materials Perspective
218(9)
8.3.1 Increasing the Relative Permittivity of DEs
219(6)
8.3.1.1 Elastomer Composites
219(3)
8.3.1.2 Elastomer Blends
222(1)
8.3.1.3 Chemical Modification
223(2)
8.3.2 Decreasing Young's Modulus
225(1)
8.3.3 Complex Network Structure
225(2)
8.4 Circuits and Electro-Mechanical Coupling Methods
227(3)
8.5 Examples of Dielectric Elastomer Generators
230(1)
8.6 Conclusion and Outlook
231(1)
Acknowledgments
232(1)
References
232(7)
9 Flexible Dye-Sensitized Solar Cells 239(44)
Byung-Man Kim
Hyun-Gyu Han
Deok-Ho Roh
Junhyeok Park
Kwang Min Kim
Un-Young Kim
Tae-Hyuk Kwon
9.1 Introduction
239(3)
9.2 Materials and Fabrication of Electrodes for FDSCs
242(12)
9.2.1 Photo-electrode
242(9)
9.2.1.1 Flexible Substrate for Photo-electrode
242(1)
9.2.1.2 Nanostructured-photoactive Film
243(6)
9.2.1.3 Fiber-type FDSCs
249(2)
9.2.2 Counter-electrode
251(3)
9.3 Sensitizers in FDSCs and Thin Photoactive Film DSCs
254(16)
9.3.1 State-of-the-Art Review of Sensitizers in FDSCs
254(4)
9.3.2 Sensitizers in Thin Photoactive Film DSCs
258(12)
9.4 Electrolyte and Hole-Transporting Materials for FDSCs
270(6)
9.5 Conclusion and Outlook
276(2)
References
278(5)
10 Self-assembly in Fabrication of Semitransparent and Meso-Planar Hybrid Perovskite Photovoltaic Devices 283(22)
Ravi K. Misra
Sigalit Aharon
Michael Layani
Shlomo Magdassi
Lioz Etgar
10.1 Introduction
283(19)
10.1.1 Semitransparent Perovskite Solar Cells Through Self-assembly of Perovskite in One Step
285(7)
10.1.1.1 Cell Architecture and Morphology
286(2)
10.1.1.2 Transparency and Photovoltaic Performance of the Cells
288(3)
10.1.1.3 Recombination Behavior of the Charges in Cells
291(1)
10.1.2 Mesoporous-Planar Hybrid Perovskite Devices Through Mesh-assisted Self-assembly of Mesoporous-TiO2
292(13)
10.1.2.1 Cell Architecture and Morphology
293(4)
10.1.2.2 Photovoltaic Performance of the Solar Cells
297(3)
10.1.2.3 Study of Recombination Behavior Through Charge Extraction
300(2)
10.2 Summary and Future Perspective
302(1)
References
302(3)
11 Flexible Organic Solar Cells 305(34)
Lin Hu
Youyu Jiang
Yinhua Zhou
11.1 Introduction
305(3)
11.1.1 Working Principle
306(1)
11.1.2 Performance Characterization of OSCs
307(1)
11.1.3 Device Structure
308(1)
11.1.3.1 Conventional Device Structure
308(1)
11.1.3.2 Inverted Device Structure
308(1)
11.2 Active Layer
308(9)
11.2.1 Donor Materials
310(3)
11.2.1.1 Poly(Phenylenevinylene) (PPV) and Polythiophene (PT) Derivatives
310(1)
11.2.1.2 D-A Conjugated Polymers
311(2)
11.2.2 Acceptor Materials
313(4)
11.2.2.1 Fullerene Derivatives
313(2)
11.2.2.2 Non-fullerene Acceptors
315(2)
11.3 Flexible Electrode
317(3)
11.3.1 Conductive Polymer (PEDOT:PSS)
317(1)
11.3.2 Metal Nanowires and Grids
318(1)
11.3.3 Hybrid Carbon Material
319(1)
11.4 Interfacial Layer
320(1)
11.4.1 Hole Transporting Layer (HTL)
320(1)
11.4.2 Electron Transporting Layer (ETL)
320(1)
11.5 Tandem Organic Solar Cells
321(5)
11.5.1 Interconnecting Layer
322(2)
11.5.2 Low Bandgap Polymer Sub-cell
324(2)
11.6 Fabrication Technology for Flexible Organic Solar Cells
326(2)
11.7 Summary
328(1)
References
329(10)
12 Flexible Quantum Dot Sensitized Solar Cells 339(44)
Yueli Liu
Keqiang Chen
Zhuoyin Peng
Wen Chen
12.1 Introduction
339(1)
12.2 Basic Concepts
340(7)
12.2.1 Quantum Dots (QDs)
340(4)
12.2.1.1 Quantum Size Effect
341(1)
12.2.1.2 Multiple Exciton Generation
341(1)
12.2.1.3 Ultrafast Electron Transfer
342(1)
12.2.1.4 Large Specific Surface Area
343(1)
12.2.2 Quantum Dots Sensitized Solar Cells (QDSSCs)
344(3)
12.2.2.1 Schematic of the Structure and Charge Circulation of QDSSCs
344(1)
12.2.2.2 Evaluation of the Photovoltaic Performances of QDSSCs
345(2)
12.3 Development of the Flexible QDSSCs
347(23)
12.3.1 Choosing of the Types of QDs
347(3)
12.3.1.1 Cd-based QDs
347(1)
12.3.1.2 Pb-based QDs
348(1)
12.3.1.3 Cu-based QDs
349(1)
12.3.2 Fabrication of the Flexible Photo-anode Films
350(1)
12.3.3 TiO2-Based Photo-anodes
351(3)
12.3.3.1 Photo-anodes of TiO2 Nanoparticles
351(1)
12.3.3.2 Photo-anodes of TiO2 Nanoarray Structures
352(2)
12.3.3.3 Designing of Novel TiO2 Architecture as Photo-anodes
354(1)
12.3.4 ZnO based Photo-anodes
354(1)
12.3.5 Other Metal Oxide Based Photo-anodes
355(1)
12.3.6 Development of the Sensitization Method
355(5)
12.3.6.1 In situ Sensitization Techniques
356(2)
12.3.6.2 Ex situ Techniques
358(2)
12.3.6.3 Co-sensitization Techniques
360(1)
12.3.7 Interfacial Engineering in QDSSCs
360(3)
12.3.7.1 Surface Passivation by Large-bandgap Semiconductors
361(1)
12.3.7.2 Surface Passivation by Metal Oxides
361(1)
12.3.7.3 Surface Passivation by Molecular Dipoles
362(1)
12.3.7.4 Surface Passivation by Dye Molecules
362(1)
12.3.7.5 Surface Passivation by Molecular Relays
362(1)
12.3.7.6 Combined Interfacial Engineering Methods
363(1)
12.3.8 Optimization of the Counter Electrodes
363(20)
12.3.8.1 Noble Metal Counter Electrodes
365(1)
12.3.8.2 Carbon Counter Electrodes
365(1)
12.3.8.3 Metallic Compound Counter Electrodes
366(4)
12.3.8.4 Polymer Counter Electrodes
370(1)
12.4 Conclusion and Future Outlook
370(1)
Acknowledgments
371(1)
References
371(12)
13 Flexible Triboelectric Nanogenerators 383(42)
Fang Yi
Yue Zhang
Qingliang Liao
Zheng Zhang
Zhuo Kang
13.1 Introduction
383(4)
13.1.1 Motivation for the Development of Flexible Triboelectric Nanogenerators
383(2)
13.1.2 Basic Working Mechanism and Working Modes of Flexible Triboelectric Nanogenerators
385(2)
13.2 Materials Used for Flexible Triboelectric Nanogenerators
387(1)
13.3 Flexible Triboelectric Nanogenerators for Harvesting Ambient Energy
388(5)
13.3.1 Harvesting Biomechanical Energy
388(3)
13.3.2 Harvesting Wind Energy
391(1)
13.3.3 Harvesting Water Energy
392(1)
13.4 Flexible Triboelectric Nanogenerators for Self-Powered Sensors
393(12)
13.4.1 Self-Powered Touch/Pressure Sensors
393(4)
13.4.2 Self-Powered Motion Sensors
397(2)
13.4.2.1 Sensing Motion of Human Body
397(2)
13.4.2.2 Sensing Motion of Objects
399(1)
13.4.3 Self-Powered Acoustic Sensors
399(3)
13.4.4 Self-Powered Liquid/Gas Flow Sensors
402(3)
13.5 Flexible Triboelectric Nanogenerators for Self-Charging Power Units
405(4)
13.5.1 Self-Charging over a Period of Time to Power Electronics
406(1)
13.5.2 Sustainably Powering Electronics
406(3)
13.6 Flexible Triboelectric Nanogenerators for Hybrid Energy Cells
409(2)
13.7 Service Behavior of Triboelectric Nanogenerators
411(3)
13.8 Summary and Prospects
414(1)
References
415(10)
14 Flexible Thermoelectric Materials and Devices 425(34)
Radhika Prabhakar
Yu Zhang
Je-Hyeong Bahk
14.1 Introduction
425(1)
14.2 Thermoelectric Energy Conversion Basics
426(3)
14.3 Flexible Thermoelectric Materials
429(6)
14.3.1 Conducting Polymers
431(3)
14.3.2 Graphene and Carbon Nanotube Based TE Materials
434(1)
14.4 Flexible Thermoelectric Energy Harvesters
435(6)
14.4.1 Energy Management
439(1)
14.4.2 Architecture of Thermoelectric Modules
440(1)
14.5 Transverse TE Devices
441(5)
14.5.1 Simulations of Transverse TEG
444(2)
14.6 Thermoelectric Sensors
446(1)
14.7 Summary and Outlook
447(1)
References
448(11)
15 Carbon-based Electrocatalysts for Water-splitting 459(26)
Guoqiang Li
Wojia Zhou
15.1 Introduction
459(1)
15.2 Nonmetal-doped Carbon for HER
460(6)
15.2.1 Nitrogen-doped Carbon-based Catalysts for HER
460(2)
15.2.2 Other Heteroatom (B, S)-doped Carbon-based Catalysts for HER
462(1)
15.2.3 Dual- or Treble-doped Carbons in Metal-free Catalysis
463(1)
15.2.4 Metal-doped Carbon for HER
464(2)
15.3 Metals Embedded in Carbon for HER
466(8)
15.3.1 Core-Shell Structure for Carbon Nanotube and Nanoparticle
468(3)
15.3.2 Metal Organic Frameworks for HER
471(3)
15.4 Electrochemistry
474(5)
15.4.1 Overpotential/Onset Potential and Calibration
474(1)
15.4.2 Current Density and Electrochemical Surface Area
475(1)
15.4.3 Tafel Plot and Exchange Current Density
476(1)
15.4.4 Electrochemical Impedance
476(1)
15.4.5 HER Durability and H2 Production
477(1)
15.4.6 Activation
477(2)
15.5 Outlook and Future Challenges
479(1)
15.5.1 HER Mechanism for Carbon-based Catalysts
479(1)
15.5.2 Electrochemistry, Especially for Activation Process
480(1)
15.5.3 OER in Acidic Electrolyte
480(1)
References
480(5)
Index 485
Chunyi Zhi, PhD, is Associate Professor in the Department of Physics and Materials Science at City University of Hong Kong, China. He has published more than 150 papers and his research field is mainly about synthesis and functionalization of boron nitride nanotubes/nanosheets, polymer composites, as well as flexible/wearable energy storage devices and sensors etc.

Liming Dai, PhD, is Kent Hale Smith Professor in Department of Macromolecular Science and Engineering at Case Western Reserve University in Ohio.