Atjaunināt sīkdatņu piekrišanu

E-grāmata: Flexible and Stretchable Electronics: Materials, Design, and Devices

Edited by , Edited by
  • Formāts: 408 pages
  • Izdošanas datums: 31-Oct-2019
  • Izdevniecība: Pan Stanford Publishing Pte Ltd
  • Valoda: eng
  • ISBN-13: 9780429602689
  • Formāts - EPUB+DRM
  • Cena: 130,74 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 408 pages
  • Izdošanas datums: 31-Oct-2019
  • Izdevniecība: Pan Stanford Publishing Pte Ltd
  • Valoda: eng
  • ISBN-13: 9780429602689

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

With the recently well developed areas of Internet of Thing, consumer wearable gadgets and artificial intelligence, flexible and stretchable electronic devices have spurred great amount of interest from both the global scientific and industrial communities. As an emerging technology, flexible and stretchable electronics requires the scale-span fabrication of devices involving nano-features, microstructures and macroscopic large area manufacturing. The key factor behind covers the organic, inorganic and nano materials that exhibit completely different mechanical and electrical properties, as well as the accurate interfacial control between these components. Based on the fusion of chemistry, physics, biology, materials science and information technology, this review volume will try to offer a timely and comprehensive overview on the flexible and stretchable electronic materials and devices. The book will cover the working principle, materials selection, device fabrication and applications of electronic components of transistors, solar cells, memories, sensors, supercapacitors, circuits and etc.

Recenzijas

"This book is dedicated to flexible electronics and is written by a series of experts in the field. There are ten chapters describing materials and devices for flexible and stretchable electronics. The first five chapters are dedicated to organic field-transistors, solar cells, memories and sensors. The last five chapters deal with supercapacitors, wearable electronics and printed circuits.

The book has nice color illustrations and is written in a clear manner. It is recommended for anybody working in organic electronics or photonics."

Mircea Dragoman, National Research and Development Institute in Microtechnology, Romania.

Preface xiii
1 Organic Field-Effect Transistors for Flexible Electronics Application
1(32)
Jung-Yao Chen
Cheng-Liang Liu
1.1 Introduction
2(1)
1.2 Device Structures and Operation Principle
3(2)
1.3 Important Device Parameters
5(2)
1.3.1 Field-Effect Mobility
6(1)
1.3.2 Current ON/OFF Ratio
6(1)
1.3.3 Threshold Voltage
7(1)
1.3.4 Subthreshold Swing
7(1)
1.4 Materials
7(6)
1.4.1 Organic Semiconductors
8(1)
1.4.1.1 p-Type
8(2)
1.4.1.2 n-Type
10(2)
1.4.2 Gate Dielectric Materials
12(1)
1.4.3 Electrode Materials
12(1)
1.4.4 Substrate Materials
13(1)
1.5 Overview of Processing Techniques
13(2)
1.5.1 Vacuum Deposition
14(1)
1.5.2 Solution-Processed Deposition
14(1)
1.6 Flexible Organic Transistor Device
15(3)
1.7 Flexible Organic Phototransistor
18(8)
1.7.1 Introduction
18(1)
1.7.2 Important Device Parameters of Organic Phototransistor
19(1)
1.7.2.1 Photoconductive gain (G)
19(1)
1.7.2.2 Photocurrent/dark current ratio (P)
20(1)
1.7.2.3 Photosensitivity [ R]
20(1)
1.7.2.4 Quantum efficiency (n)
20(1)
1.7.2.5 Photodetectivity (D*]
20(1)
1.7.3 Examples of Flexible Organic Phototransistors
21(1)
1.7.3.1 Donor-acceptor system
21(2)
1.7.3.2 Photochromism
23(1)
1.7.3.3 Photopolymerization
24(2)
1.8 Conclusion
26(7)
2 Flexible and Organic Solar Cells
33(48)
Bing Cao
2.1 Introduction
33(1)
2.2 Basic Solar Cell Concepts
34(4)
2.2.1 Structure of Organic Solar Cells
34(1)
2.2.2 Operation Principle of Organic Solar Cells
35(1)
2.2.3 Photovoltaic Parameters
36(2)
2.3 Donor Materials Development
38(11)
2.3.1 Conjugated Polymers
39(6)
2.3.2 Conjugated Small Molecules
45(4)
2.4 Acceptor Materials Development
49(5)
2.4.1 Fullerene Derivatives
49(1)
2.4.2 Non-fullerene Small Molecules
50(4)
2.5 Interfacial Materials and Device Engineering
54(2)
2.6 Flexible and Organic Solar Cells
56(25)
3 Flexible Parylene-C Material and Its Applications in MOSFETs, RRAMs, and Sensors
81(32)
Yimao Cai
Min Lin
Qingyu Chen
3.1 An Introduction to Parylene
82(2)
3.1.1 Types and Growth of Parylene Thin Films
82(1)
3.1.2 Properties of Parylene-C Thin Films
83(1)
3.2 Application of Parylene-C in MOSFETs
84(7)
3.2.1 Gate Dielectric
84(3)
3.2.2 Substrate
87(2)
3.2.3 Encapsulation Gate Dielectric
89(2)
3.3 Application of Parylene-C in RRAM
91(5)
3.4 Application of Parylene-C in Sensors
96(8)
3.4.1 Flow Sensors
96(2)
3.4.2 pH Sensors
98(2)
3.4.3 Force Sensors
100(1)
3.4.4 Pressure Sensors
101(3)
3.5 Conclusion
104(9)
4 Resistive Switching Phenomenon for Flexible and Stretchable Memories
113(44)
Xiaohui Yi
Shuang Gaojie Shang
Bin Chen
Gang Liu
Run-Wei Li
4.1 Introduction
114(3)
4.2 Design Principle of Flexible Resistive Switching Memory
117(2)
4.3 Flexible Resistive Switching Storage Media Materials
119(27)
4.3.1 Inorganic Materials
119(3)
4.3.2 Organic Materials
122(2)
4.3.2.1 Organic resistive switching memory with small molecules
124(3)
4.3.2.2 Blends or mixtures of memory polymer materials
127(2)
4.3.2.3 Polymer matrices for electroactive components
129(5)
4.3.2.4 Single-component polymer active materials
134(7)
4.3.3 Inorganic-Organic Hybrid Materials
141(1)
4.3.3.1 Metal-organic frameworks
141(3)
4.3.3.2 Perovskite
144(2)
4.4 Conclusion and Outlook
146(11)
5 Two-Dimensional Materials for Flexible In-Plane Micro-Supercapacitors
157(34)
Kaiyue Jiang
Chongqing Yang
Xiaodong Zhuang
5.1 Introduction
157(1)
5.2 In-Plane Micro-Supercapacitors
158(2)
5.3 Graphene
160(13)
5.3.1 Reduced Graphene Oxide
160(2)
5.3.2 Electrochemically Exfoliated Graphene
162(3)
5.3.3 Laser-Scribed Graphene
165(3)
5.3.4 Graphene Composites
168(5)
5.4 MXenes
173(1)
5.5 Two-Dimensional Metal Oxides
174(4)
5.5.1 Layered Double Hydroxides
175(2)
5.5.2 V205/MWNT
177(1)
5.6 Two-Dimensional Soft Materials
178(3)
5.6.1 Two-Dimensional Coordination Polymer Framework
180(1)
5.6.2 Two-Dimensional Thiophene
180(1)
5.7 Summary and Outlook
181(10)
6 Flexible On-Chip Interdigital Micro-Supercapacitors: Efficient Power Units for Wearable Electronics
191(30)
Guozhen Shen
Kai Jiang
Di Chen
6.1 Introduction
192(3)
6.2 Fabrication Methods
195(10)
6.2.1 Conventional Photolithography Method
196(3)
6.2.2 Laser-Scribing Method
199(4)
6.2.3 Printing Method
203(2)
6.3 Stretchable On-Chip MSCs
205(4)
6.4 Integrated Systems
209(4)
6.5 Conclusion
213(8)
7 Flexible and Stretchable Sensors
221(46)
Tie hi
Yudong Cao
Chunyan Qu
Ting Zhang
7.1 Introduction
222(1)
7.2 Classes of Architectural Strategies for Flexible and Stretchable Sensors
223(11)
7.2.1 One-Dimensional Fibrous Configuration
224(4)
7.2.2 Two-Dimensional Planar Configuration
228(2)
7.2.3 Three-Dimensional Blocks Configuration
230(3)
7.2.4 Nature-Inspired Structure for Flexibility and Stretchability
233(1)
7.3 Classes of Functional Materials for Flexible and Stretchable Sensors
234(12)
7.3.1 One-Dimensional Nanowire Materials
235(3)
7.3.2 Two-Dimensional Planar Materials
238(2)
7.3.3 Semiconductors
240(4)
7.3.4 Other Special Functional Materials
244(2)
7.4 Flexible and Stretchable Sensors for Human Information Detection
246(8)
7.5 Conclusion
254(13)
8 Liquid Metal-Enabled Functional Flexible and Stretchable Electronics
267(28)
Xuelin Wang
Jing Liu
8.1 Introduction
268(1)
8.2 Materials and Properties of Gallium-Based RTLMs
269(5)
8.2.1 Compositions of Gallium-Based RTLM Alloys
269(2)
8.2.2 Basic Properties of LMs in Flexible Electronics
271(3)
8.3 Design and Fabrication of LM Flexible Electronics
274(4)
8.3.1 Planar Electronics Printing
274(3)
8.3.2 3D Printing
277(1)
8.4 Applications: LM Soft Devices
278(6)
8.4.1 LM Sensor
279(2)
8.4.2 LM Coil
281(1)
8.4.3 LM e-Skin and Wearable Bioelectronics
282(1)
8.4.4 LM-Conformable Electronics
283(1)
8.4.5 Other Applications
283(1)
8.5 Discussion and Conclusion
284(11)
9 Printing Technology for Fabrication of Flexible and Stretchable Electronics
295(50)
Wei Yuan
Zheng Cui
9.1 Introduction
296(2)
9.2 Printing Process
298(7)
9.2.1 Jet Printing (Non-contact Printing)
299(1)
9.2.1.1 Inkjet printing
300(1)
9.2.1.2 Aerosol-jet printing
300(1)
9.2.1.3 Electrohydrodynamic-jet printing
301(1)
9.2.2 Replicate Printing (Impact Printing)
302(1)
9.2.2.1 Screen printing
302(1)
9.2.2.2 Gravure printing
303(1)
9.2.2.3 Flexographic printing
304(1)
9.2.2.4 Offset printing
304(1)
9.2.2.5 Roll-to-roll printing
305(1)
9.3 Printable Inks
305(9)
9.3.1 Metal Materials
305(3)
9.3.2 Transparent Conducting Oxide Inks
308(1)
9.3.3 Carbon Nanomaterials
309(2)
9.3.4 Semiconductor Nanomaterials
311(1)
9.3.5 Reactive Inks
312(1)
9.3.6 Stretchable Inks
313(1)
9.4 Post-printing Process
314(6)
9.4.1 Thermal Sintering
315(1)
9.4.2 Photonic Sintering
316(2)
9.4.3 Plasma, Microwave, and Electrical Sintering
318(2)
9.5 Applications
320(9)
9.5.1 Transparent Conductive Films
320(3)
9.5.2 Printed TFTs
323(1)
9.5.3 Printed Solar Cells
324(2)
9.5.4 Printed OLEDs
326(1)
9.5.5 Printed Stretchable Circuits
327(2)
9.6 Summary
329(16)
10 Mechanics and Control of Smart Flexible Structures
345(38)
Guoyong Mao
Shaoxing Qu
10.1 Introduction
346(1)
10.2 Wavy Designs
347(8)
10.2.1 Small Deformations of Wavy Ribbons
348(1)
10.2.2 Large Deformations of Wavy Ribbons
349(1)
10.2.3 Partially Boned Wavy Ribbons
350(2)
10.2.4 Wavy Membranes
352(3)
10.3 Island-Bridge Designs
355(11)
10.3.1 Straight Interconnects
355(4)
10.3.2 Serpentine Interconnects
359(3)
10.3.3 Fractal Interconnects
362(4)
10.4 Origami/Kirigami Designs
366(8)
10.5 Conclusion
374(9)
Index 383
Dr. Run-Wei Li is currently a full professor at the Ningbo Institute of Materials Technology and Engineering (NIMTE), the Chinese Academy of Sciences (CAS) and the director of CAS Key Laboratory of Magnetic Materials and Devices.

Dr. Gang Liu is currently a full professor at the Ningbo Institute of Materials Technology and Engineering (NIMTE), CAS.