Preface |
|
xvii | |
|
1 Electrodes for Flexible Integrated Supercapacitors |
|
|
1 | (26) |
|
|
|
1.1 Introduction and Overview of Supercapacitors |
|
|
2 | (2) |
|
1.2 Electrode Materials for Flexible Supercapacitors |
|
|
4 | (14) |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (2) |
|
|
8 | (1) |
|
1.2.1.5 Graphene Hydrogel |
|
|
8 | (2) |
|
1.2.2 Conducting Polymers |
|
|
10 | (3) |
|
|
13 | (1) |
|
1.2.3.1 Ruthenium Oxide (Ru02) Electrode Material |
|
|
14 | (1) |
|
1.2.3.2 Nickel Oxide (NiO) Electrode Material |
|
|
15 | (1) |
|
1.2.3.3 Copper Oxide (CuO) Electrode Material |
|
|
16 | (1) |
|
1.2.3.4 Composite Electrode Materials |
|
|
17 | (1) |
|
1.3 Device Architecture of Flexible Supercapacitor |
|
|
18 | (1) |
|
1.4 Integration of Flexible Supercapacitors |
|
|
19 | (2) |
|
|
21 | (6) |
|
|
22 | (5) |
|
2 Flexible Supercapacitors Based on Fiber-Shape Electrodes |
|
|
27 | (16) |
|
|
|
|
|
|
|
27 | (2) |
|
|
29 | (2) |
|
2.2.1 Electrochemical Supercapacitor |
|
|
29 | (1) |
|
2.2.2 Flexible Supercapacitors |
|
|
30 | (1) |
|
2.3 Shape Dependent Flexible Electrodes |
|
|
31 | (3) |
|
2.3.1 Porous 3D Flexible Electrodes |
|
|
32 | (1) |
|
2.3.2 Flexible Paper Electrodes |
|
|
32 | (1) |
|
2.3.3 Flexible Fiber Electrodes |
|
|
33 | (1) |
|
2.4 Fiber Shape Electrodes (FE/FSC) |
|
|
34 | (5) |
|
2.4.1 Wrapping Fiber Shape Electrode/Supercapacitors |
|
|
34 | (1) |
|
2.4.2 Coaxial Fiber Shape Electrode/Supercapacitor |
|
|
35 | (1) |
|
2.4.3 Parallel Fiber Shape Electrode/Supercapacitor |
|
|
36 | (1) |
|
2.4.4 Twisted Fiber Shape Electrode/Supercapacitor |
|
|
37 | (1) |
|
2.4.5 Rolled Fiber Shape Electrode/Supercapacitors |
|
|
38 | (1) |
|
|
39 | (4) |
|
|
40 | (3) |
|
3 Graphene-Based Electrodes for Flexible Supercapacitors |
|
|
43 | (16) |
|
|
|
|
|
43 | (1) |
|
|
44 | (2) |
|
|
44 | (1) |
|
|
45 | (1) |
|
3.2.3 Flexible Graphene-Based Nano Composites |
|
|
45 | (1) |
|
3.3 Fabrication Techniques for the Electrode Materials |
|
|
46 | (2) |
|
|
46 | (1) |
|
3.3.2 Direct Coating (DC) |
|
|
46 | (2) |
|
3.3.3 Chemical Vapor Deposition (CVD) |
|
|
48 | (1) |
|
|
48 | (1) |
|
3.4 Substrate Materials for the Flexible SCs |
|
|
48 | (1) |
|
3.5 Graphene Nanocomposite-Based Electrode Materials |
|
|
49 | (3) |
|
3.5.1 Additives/Graphene Electrodes |
|
|
49 | (1) |
|
3.5.2 Binder/Graphene Electrodes |
|
|
49 | (1) |
|
3.5.3 Pure Graphene Electrode |
|
|
50 | (1) |
|
3.5.4 Conductive Polymers/Graphene Composites Electrode |
|
|
50 | (1) |
|
3.5.5 Metal or Metal Oxides (MOs) Composite Electrodes |
|
|
51 | (1) |
|
3.6 NSs for the Flexible SC |
|
|
52 | (1) |
|
|
53 | (6) |
|
|
54 | (1) |
|
|
54 | (5) |
|
4 Polymer-Based Flexible Substrates for Flexible Supercapacitors |
|
|
59 | (36) |
|
|
|
|
Nurul Infaza Talalah Ramli |
|
|
|
|
60 | (1) |
|
4.2 Polymers-Based Flexible Materials for Flexible Supercapacitors |
|
|
61 | (1) |
|
4.3 Synthesis and Fabrication Approach of the Polymer-Based Electrode |
|
|
62 | (8) |
|
4.3.1 Preparation of Polymer-Based Electrode Materials |
|
|
62 | (1) |
|
4.3.1.1 Polyaniline (PANI) |
|
|
63 | (2) |
|
4.3.1.2 Polypyrrole (PPy) |
|
|
65 | (1) |
|
4.3.1.3 Poly (3,4-ethylenedioxythiophene) (PEDOT) |
|
|
66 | (3) |
|
4.3.2 Electrode Fabrication |
|
|
69 | (1) |
|
4.4 Physicochemical Characterization of Flexible Supercapacitors |
|
|
70 | (9) |
|
4.4.1 Scanning Electron Microscopy |
|
|
70 | (1) |
|
4.4.2 Transmission Electron Microscopy |
|
|
71 | (2) |
|
|
73 | (2) |
|
4.4.4 Surface Area Analysis by BET (Brunauer, Emmett and Teller) |
|
|
75 | (3) |
|
4.4.5 X-Ray Photoelectron Spectroscopy (XPS) |
|
|
78 | (1) |
|
4.5 Recent Findings on the Performance of Flexible Supercapacitors |
|
|
79 | (7) |
|
4.5.1 Electrochemical Double-Layer Capacitor (EDLC) |
|
|
80 | (1) |
|
|
81 | (2) |
|
4.5.3 Hybrid Supercapacitor |
|
|
83 | (3) |
|
|
86 | (9) |
|
|
87 | (8) |
|
5 Carbon Substrates for Flexible Supercapacitors and Energy Storage Applications |
|
|
95 | (48) |
|
|
|
|
|
|
|
|
|
96 | (2) |
|
5.2 Overview of the Energy Storage System |
|
|
98 | (11) |
|
|
109 | (15) |
|
5.3.1 Equivalent Circuit Models |
|
|
120 | (1) |
|
|
121 | (1) |
|
|
122 | (1) |
|
5.3.4 Fractional-Order Models |
|
|
122 | (1) |
|
|
123 | (1) |
|
5.4 Industrial Applications of Capacitors |
|
|
124 | (3) |
|
|
124 | (1) |
|
5.4.2 Uninterruptible Power Supplies |
|
|
125 | (1) |
|
5.4.3 Hybrid Energy Storage |
|
|
126 | (1) |
|
|
127 | (16) |
|
|
127 | (16) |
|
6 Organic Electrolytes for Flexible Supercapacitors |
|
|
143 | (34) |
|
|
|
|
|
143 | (2) |
|
|
145 | (5) |
|
6.3 Solid and Quasi-Solid-State Electrolytes |
|
|
150 | (9) |
|
6.3.1 PVA-Based Gel Electrolytes |
|
|
154 | (2) |
|
6.3.2 PEG-Based Gel Electrolytes |
|
|
156 | (1) |
|
6.3.3 PVDF-Based Gel Electrolytes |
|
|
157 | (2) |
|
6.4 Ionic Liquids-Based Electrolytes |
|
|
159 | (6) |
|
6.5 Redox Active Electrolytes |
|
|
165 | (2) |
|
|
167 | (10) |
|
|
170 | (7) |
|
7 Carbon-Based Electrodes for Flexible Supercapacitors Beyond Graphene |
|
|
177 | (34) |
|
|
|
|
178 | (1) |
|
7.2 Materials Used to Prepare Flexible Supercapacitors |
|
|
179 | (3) |
|
|
180 | (1) |
|
7.2.1.1 Activated Carbon (AC) |
|
|
180 | (1) |
|
7.2.1.2 Carbon Nanotubes (CNTs) |
|
|
180 | (1) |
|
|
181 | (1) |
|
|
181 | (1) |
|
|
181 | (1) |
|
|
182 | (1) |
|
7.3 The Carbon-Based Electrode Used for Flexible Supercapacitors |
|
|
182 | (19) |
|
7.3.1 Carbon Nanotube (CNT)-Based Materials |
|
|
182 | (1) |
|
7.3.1.1 CNT-Conducting Polymer Composite as Supercapacitors |
|
|
182 | (3) |
|
7.3.1.2 CNT-Metal Oxide Composite as Supercapacitors |
|
|
185 | (6) |
|
7.3.2 Activated Carbon-Based Materials |
|
|
191 | (1) |
|
7.3.2.1 Activated Carbon-Conducting Polymer Composite as a Supercapacitor |
|
|
191 | (4) |
|
7.3.2.2 Activated Carbon-Metal Oxide Composite as a Supercapacitor |
|
|
195 | (6) |
|
|
201 | (10) |
|
|
201 | (10) |
|
8 Biomass-Derived Electrodes for Flexible Supercapacitors |
|
|
211 | (22) |
|
Selvasundarasekar Sam Sankar |
|
|
|
|
211 | (3) |
|
8.1.1 Electrode Materials for Flexible Supercapacitors |
|
|
213 | (1) |
|
8.2 Biomass-Derived Carbon Materials |
|
|
214 | (6) |
|
|
214 | (1) |
|
8.2.1.1 Physical Activation |
|
|
215 | (1) |
|
8.2.1.2 Chemical Activation |
|
|
215 | (3) |
|
|
218 | (1) |
|
|
218 | (1) |
|
8.2.2.1 Hydrothermal Method |
|
|
218 | (1) |
|
|
219 | (1) |
|
8.3 Incorporation of Biomass-Based Electrodes in Flexible Supercapacitors |
|
|
220 | (2) |
|
8.4 Challenges for Using Biomass-Derived Materials |
|
|
222 | (2) |
|
|
224 | (9) |
|
|
225 | (8) |
|
9 Conducting Polymer Electrolytes for Flexible Supercapacitors |
|
|
233 | (30) |
|
|
|
|
|
234 | (2) |
|
9.2 Components of a Supercapacitor |
|
|
236 | (4) |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
239 | (1) |
|
9.3 Configuration of a Supercapacitor |
|
|
240 | (1) |
|
9.4 Conducting Polymer Electrolytes |
|
|
241 | (11) |
|
9.4.1 Gel Conducting Polymer Electrolytes |
|
|
243 | (3) |
|
9.4.2 Ionic Liquid-Based Conducting Polymer |
|
|
246 | (1) |
|
9.4.3 OH- Ion Conducting Polymers |
|
|
247 | (5) |
|
|
252 | (11) |
|
|
252 | (11) |
|
10 Inorganic Electrodes for Flexible Supercapacitor |
|
|
263 | (14) |
|
|
|
|
|
|
|
|
264 | (1) |
|
10.2 Flexible Inorganic Electrode Based on Carbon Nanomaterial |
|
|
265 | (7) |
|
10.2.1 Carbonaceous Material |
|
|
265 | (1) |
|
|
266 | (2) |
|
10.2.1.2 Graphene Oxide-Based Electrodes |
|
|
268 | (1) |
|
10.2.1.3 Carbon Nanotubes |
|
|
269 | (2) |
|
10.2.1.4 Carbon Films/Textiles |
|
|
271 | (1) |
|
|
272 | (5) |
|
|
273 | (4) |
|
11 New-Generation Materials for Flexible Supercapacitors |
|
|
277 | (38) |
|
|
|
|
|
|
|
277 | (1) |
|
11.2 Taxonomy of Supercapacitor |
|
|
278 | (2) |
|
11.3 Fundamentals of Supercapacitor |
|
|
280 | (2) |
|
11.4 Flexible Supercapacitor |
|
|
282 | (16) |
|
11.4.1 Graphene-Based Flexible Supercapacitor |
|
|
282 | (2) |
|
11.4.2 Metal Oxide/Hydroxide-Based Flexible Supercapacitor |
|
|
284 | (6) |
|
11.4.3 Conducting Polymer-Based Flexible Supercapacitor |
|
|
290 | (8) |
|
11.5 Outlook and Perspectives |
|
|
298 | (17) |
|
|
303 | (1) |
|
|
303 | (12) |
|
12 Asymmetric Flexible Supercapacitors: An Overview of Principle, Materials and Mechanism |
|
|
315 | (34) |
|
|
|
12.1 Introduction: Why Store Energy? |
|
|
316 | (1) |
|
12.2 Supercapacitor: A Green Approach Towards Energy Storage |
|
|
316 | (3) |
|
12.3 Flexible Supercapacitors |
|
|
319 | (6) |
|
12.3.1 Solid Electrolytes |
|
|
320 | (2) |
|
12.3.2 Flexible Electrodes |
|
|
322 | (2) |
|
12.3.3 Cell Designs for Flexible Supercapacitor |
|
|
324 | (1) |
|
12.4 Asymmetric Supercapacitor |
|
|
325 | (8) |
|
12.4.1 Principle, Material and Mechanism |
|
|
325 | (5) |
|
12.4.2 Performance Evaluation in Asymmetric Supercapacitor |
|
|
330 | (3) |
|
12.5 Recent Advances in Flexible Asymmetric Supercapacitors |
|
|
333 | (2) |
|
|
335 | (14) |
|
|
335 | (14) |
|
13 Aqueous Electrolytes for Flexible Supercapacitors |
|
|
349 | (64) |
|
|
|
350 | (7) |
|
13.1.1 Influence of Electrolytes on Performance of Supercapacitors |
|
|
352 | (2) |
|
13.1.2 What is an Ideal Electrolyte? |
|
|
354 | (1) |
|
13.1.3 Classes of Electrolytes for Supercapacitors |
|
|
355 | (2) |
|
13.2 Electrolyte Performance-Controlling Parameters for Designing Flexible Supercapacitors |
|
|
357 | (5) |
|
13.2.1 Large Electrochemical Stability |
|
|
357 | (1) |
|
13.2.2 High Ionic Conductivity |
|
|
357 | (1) |
|
13.2.3 Nature of Electrolyte |
|
|
358 | (1) |
|
13.2.4 Dielectric Constant and Viscosity of Solvent |
|
|
358 | (1) |
|
13.2.5 Low Melting and High Boiling Points |
|
|
359 | (1) |
|
13.2.6 High Chemical Stability |
|
|
360 | (1) |
|
|
360 | (1) |
|
13.2.8 Low Cost and Availability |
|
|
360 | (1) |
|
13.2.9 Influence of Pressure |
|
|
360 | (1) |
|
13.2.10 Influence of Binder |
|
|
361 | (1) |
|
13.3 Why Aqueous Electrolytes? |
|
|
362 | (1) |
|
|
363 | (15) |
|
13.4.1 EDLC and Pseudocapacitor Electrode Materials Employing H2SO4 Aqueous Electrolyte |
|
|
375 | (2) |
|
13.4.2 H2S04 Electrolyte-Based Nanocomposite Electrode Material Supercapacitors |
|
|
377 | (1) |
|
13.4.3 H2S04 Electrolyte-Based Hybrid Supercapacitors |
|
|
377 | (1) |
|
13.5 Alkaline Electrolytes |
|
|
378 | (5) |
|
13.5.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors |
|
|
379 | (2) |
|
13.5.2 Alkaline Electrolyte-Based Nanocomposite Supercapacitors |
|
|
381 | (2) |
|
13.5.3 Alkaline Electrolyte-Based Hybrid Supercapacitors |
|
|
383 | (1) |
|
|
383 | (5) |
|
13.6.1 Neutral Salt Aqueous Electrolyte-Based EDLC and Pseudocapacitors |
|
|
384 | (3) |
|
13.6.2 Neutral Salt Aqueous Electrolyte-Based Nanocomposite Supercapacitors |
|
|
387 | (1) |
|
13.6.3 Neutral Electrolyte-Based Hybrid Supercapacitors |
|
|
388 | (1) |
|
13.7 Comparative Electrochemical Performances in Different Aqueous Electrolytes |
|
|
388 | (6) |
|
13.8 Water-in-Salt Electrolytes for Flexible Supercapacitors |
|
|
394 | (1) |
|
13.9 Conclusion and Future Prospects |
|
|
395 | (18) |
|
|
396 | (1) |
|
|
396 | (17) |
|
14 Electrodes for Flexible Micro-Supercapacitors |
|
|
413 | (48) |
|
|
Jiacheng Wang Gustavo Tontini |
|
|
|
|
413 | (1) |
|
14.2 Electrode Configurations |
|
|
414 | (7) |
|
|
414 | (1) |
|
|
415 | (1) |
|
|
416 | (1) |
|
14.2.2.2 Twisted or Two-Ply |
|
|
417 | (1) |
|
|
417 | (1) |
|
|
417 | (1) |
|
|
418 | (1) |
|
14.2.3 Interdigitated uSCs |
|
|
418 | (3) |
|
14.3 Manufacturing Techniques |
|
|
421 | (10) |
|
|
421 | (1) |
|
|
422 | (1) |
|
14.3.3 Laser Direct-Writing |
|
|
422 | (1) |
|
|
423 | (1) |
|
|
423 | (1) |
|
14.3.3.3 Laser Transfer Method |
|
|
424 | (1) |
|
|
425 | (1) |
|
|
426 | (1) |
|
|
427 | (1) |
|
|
428 | (3) |
|
14.4 State-of-the-Art Electrode Materials |
|
|
431 | (14) |
|
|
431 | (2) |
|
|
433 | (2) |
|
14.4.3 Transition-Metal Chalcogenides |
|
|
435 | (1) |
|
14.4.4 Metal-Based Materials |
|
|
435 | (3) |
|
14.4.5 Conducting Polymers |
|
|
438 | (2) |
|
14.4.6 Composites or Hybrid Structures |
|
|
440 | (1) |
|
14.4.7 Symmetric vs Asymmetric |
|
|
441 | (4) |
|
14.5 Conclusion and Outlook |
|
|
445 | (16) |
|
|
446 | (1) |
|
|
447 | (14) |
|
15 Electrodes for Flexible Self-Healable Supercapacitors |
|
|
461 | (24) |
|
|
|
|
|
|
|
|
462 | (6) |
|
|
463 | (1) |
|
15.1.2 Electric Double Layer Capacitors (EDLCs) |
|
|
464 | (3) |
|
|
467 | (1) |
|
15.2 Self-Healable Nanomaterials |
|
|
468 | (4) |
|
15.2.1 Metallic Nanomaterials |
|
|
468 | (2) |
|
15.2.2 Non-Metallic/Carbon-Based Nanomaterials |
|
|
470 | (1) |
|
15.2.3 Conducting Polymer-Based Nanomaterials |
|
|
471 | (1) |
|
15.3 Nanomaterials-Based Interfaces for Supercapacitors |
|
|
472 | (7) |
|
15.3.1 Metal Nanomaterials-Based Interfaces for Supercapacitors |
|
|
473 | (1) |
|
15.3.2 Graphene-Based Interfaces for Self-Healable Supercapacitors |
|
|
474 | (4) |
|
15.3.3 CNT/GO/PANI Composites Supercapacitors |
|
|
478 | (1) |
|
|
479 | (6) |
|
|
480 | (5) |
|
16 Electrodes for Flexible-Stretchable Supercapacitors |
|
|
485 | (48) |
|
|
|
|
|
486 | (4) |
|
16.1.1 Supercapacitors and Energy Storage Mechanisms |
|
|
487 | (2) |
|
16.1.2 Flexible/Stretchable Supercapacitors |
|
|
489 | (1) |
|
16.2 Electrodes for Flexible/Stretchable Supercapacitors |
|
|
490 | (21) |
|
16.2.1 Metal Oxide-Based Flexible/Stretchable Supercapacitors |
|
|
491 | (2) |
|
16.2.1.1 Vanadium-Based Flexible Electrodes |
|
|
493 | (1) |
|
16.2.1.2 Manganese - Based Flexible/Stretchable Electrodes |
|
|
494 | (2) |
|
16.2.1.3 Ruthenium-Based Flexible Electrodes |
|
|
496 | (2) |
|
16.2.1.4 Other Metal Oxides-Based Flexible Electrodes |
|
|
498 | (1) |
|
16.2.2 2D Materials-Based Flexible/Stretchable Supercapacitors |
|
|
499 | (5) |
|
16.2.3 Carbon-Based Flexible/Stretchable Supercapacitors |
|
|
504 | (1) |
|
16.2.4 Conductive Polymer-Based Flexible/Stretchable Supercapacitors |
|
|
505 | (2) |
|
16.2.5 Hybrid Composites-Based Flexible/Stretchable Supercapacitors |
|
|
507 | (4) |
|
16.3 Conclusion and Future Remarks |
|
|
511 | (22) |
|
|
512 | (21) |
|
17 Fabrication Approaches of Energy Storage Materials for Flexible Supercapacitors |
|
|
533 | (16) |
|
|
|
|
Abbreviations |
|
533 | (16) |
|
|
534 | (2) |
|
17.2 Classification of Flexible Supercapacitors |
|
|
536 | (8) |
|
|
536 | (1) |
|
|
536 | (1) |
|
|
537 | (1) |
|
17.2.1.3 Conducting Polymers |
|
|
537 | (1) |
|
|
537 | (1) |
|
17.2.2 Fabrication Methods |
|
|
538 | (1) |
|
17.2.2.1 Electro-Chemical Deposition Method |
|
|
538 | (1) |
|
17.2.2.2 Chemical Bath Deposition (CBD) Process |
|
|
539 | (1) |
|
|
540 | (1) |
|
17.2.2.4 Spray Deposition Method |
|
|
541 | (1) |
|
17.2.2.5 Sol-Gel Technique |
|
|
542 | (1) |
|
17.2.2.6 Direct Writing Method |
|
|
543 | (1) |
|
|
544 | (5) |
|
|
545 | (4) |
|
18 Nature-Inspired Electrodes for Flexible Supercapacitors |
|
|
549 | (26) |
|
|
|
|
|
549 | (3) |
|
18.2 Energy Storing Mechanism of Supercapacitors |
|
|
552 | (5) |
|
18.2.1 Electrostatic Double Layer Capacitor (EDLC) |
|
|
554 | (1) |
|
|
555 | (1) |
|
18.2.3 Hybrid Supercapacitor |
|
|
556 | (1) |
|
18.3 Flexible Supercapacitors |
|
|
557 | (3) |
|
18.4 Essential Parameters of Supercapacitors |
|
|
560 | (1) |
|
18.4.1 Energy Density Parameter |
|
|
560 | (1) |
|
18.4.2 Power Density Parameter |
|
|
561 | (1) |
|
18.5 Natural Flexible Supercapacitors |
|
|
561 | (4) |
|
|
565 | (10) |
|
|
565 | (10) |
|
19 Ionic Liquid Electrolytes for Flexible Supercapacitors |
|
|
575 | (36) |
|
|
Devadas Bhat Panemangalore |
|
|
|
575 | (2) |
|
|
577 | (1) |
|
19.2 Mobile Energy Storage Systems and Supercapacitors |
|
|
578 | (2) |
|
19.3 Flexible Supercapacitors: Need and Challenges |
|
|
580 | (1) |
|
19.4 Developments in the Design of a Supercapacitor |
|
|
581 | (2) |
|
19.5 Electrolytes for Flexible Supercapacitors |
|
|
583 | (3) |
|
19.5.1 Aqueous Electrolytes |
|
|
583 | (1) |
|
19.5.2 Solid Electrolytes |
|
|
584 | (1) |
|
19.5.3 Liquid Electrolytes |
|
|
584 | (1) |
|
19.5.4 Ionic Liquid (IL) Electrolytes |
|
|
585 | (1) |
|
19.6 Gel Polymer Electrolytes (GPEs) |
|
|
586 | (2) |
|
|
588 | (6) |
|
19.8 Design Flexibility With IL Electrolytes |
|
|
594 | (2) |
|
19.9 Electrolyte-Electrode Hybrid Design |
|
|
596 | (1) |
|
19.10 Ionic Liquid Electrolytes and Problem of Leakage |
|
|
597 | (1) |
|
19.11 Mechanical Stability of ILs |
|
|
597 | (1) |
|
|
598 | (13) |
|
|
598 | (13) |
|
20 Conducting Polymer-Based Flexible Supercapacitor Devices |
|
|
611 | (15) |
|
|
|
|
|
|
|
Mahadevappa Y. Kariduraganavar |
|
|
|
612 | (1) |
|
20.2 Principles of Supercapacitor |
|
|
612 | (1) |
|
20.3 Classification of Supercapacitors |
|
|
613 | (2) |
|
20.3.1 Electrochemical Double-Layer Capacitors |
|
|
613 | (1) |
|
|
613 | (1) |
|
20.3.2.1 Conducting Polymers |
|
|
614 | (1) |
|
20.4 Conducting Polymer-Based Flexible Supercapacitors |
|
|
615 | (9) |
|
20.4.1 Polyaniline-Based Flexible Supercapacitors |
|
|
616 | (2) |
|
20.4.2 Polypyrrole-Based Flexible Supercapacitors |
|
|
618 | (3) |
|
20.4.3 Polythiophene and its Derivatives-Based Flexible Supercapacitors |
|
|
621 | (3) |
|
20.5 Electrolytes for Flexible Supercapacitors |
|
|
624 | (2) |
|
20.6 Conclusions and Future Perspectives |
|
|
626 | (1) |
Acknowledgements |
|
626 | (1) |
References |
|
626 | (9) |
Index |
|
635 | |