Atjaunināt sīkdatņu piekrišanu

Flexible Supercapacitor Nanoarchitectonics [Hardback]

Edited by (Aligarh Muslim University, Aligarh, India), Edited by (National Center for Nanoscience and Technology (NCNST, Beijing)), Edited by , Edited by
  • Formāts: Hardback, 672 pages, height x width x depth: 10x10x10 mm, weight: 454 g
  • Izdošanas datums: 20-Aug-2021
  • Izdevniecība: Wiley-Scrivener
  • ISBN-10: 1119711452
  • ISBN-13: 9781119711452
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 273,13 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 672 pages, height x width x depth: 10x10x10 mm, weight: 454 g
  • Izdošanas datums: 20-Aug-2021
  • Izdevniecība: Wiley-Scrivener
  • ISBN-10: 1119711452
  • ISBN-13: 9781119711452
Citas grāmatas par šo tēmu:
"The 21 chapters in this book presents a comprehensive overview of flexible supercapacitors using engineering nanoarchitectures mediated by functional nanomaterials and polymers as electrodes, electrolytes, and separators, etc. for advanced energy applications. The various aspects of flexible supercapacitors, including capacitor electrochemistry, evaluating parameters, operating conditions, characterization techniques, different types of electrodes, electrolytes, and flexible substrates are covered. Thisis probably the first book of its type which systematically describes the recent developments and progress in flexible supercapacitor technology, and will be very helpful for generating new and innovative ideas in the field of energy storage material forwearable/flexible industry applications."--

The 21 chapters in this book presents a comprehensive overview of flexible supercapacitors using engineering nanoarchitectures mediated by functional nanomaterials and polymers as electrodes, electrolytes, and separators, etc. for advanced energy applications. The various aspects of flexible supercapacitors, including capacitor electrochemistry, evaluating parameters, operating conditions, characterization techniques, different types of electrodes, electrolytes, and flexible substrates are covered. This is probably the first book of its type which systematically describes the recent developments and progress in flexible supercapacitor technology, and will be very helpful for generating new and innovative ideas in the field of energy storage material for wearable/flexible industry applications.

Preface xvii
1 Electrodes for Flexible Integrated Supercapacitors
1(26)
Sajid ur Rehman
Hong Bi
1.1 Introduction and Overview of Supercapacitors
2(2)
1.2 Electrode Materials for Flexible Supercapacitors
4(14)
1.2.1 Carbon Materials
4(1)
1.2.1.1 Activated Carbon
4(1)
1.2.1.2 Carbon Nanotubes
5(1)
1.2.1.3 Graphene
6(2)
1.2.1.4 Carbon Aerogels
8(1)
1.2.1.5 Graphene Hydrogel
8(2)
1.2.2 Conducting Polymers
10(3)
1.2.3 Metal Compounds
13(1)
1.2.3.1 Ruthenium Oxide (Ru02) Electrode Material
14(1)
1.2.3.2 Nickel Oxide (NiO) Electrode Material
15(1)
1.2.3.3 Copper Oxide (CuO) Electrode Material
16(1)
1.2.3.4 Composite Electrode Materials
17(1)
1.3 Device Architecture of Flexible Supercapacitor
18(1)
1.4 Integration of Flexible Supercapacitors
19(2)
1.5 Conclusion
21(6)
References
22(5)
2 Flexible Supercapacitors Based on Fiber-Shape Electrodes
27(16)
Faiza Bibi
Muhammad Hiam Khan
Abdur Rahim
Nawshad Muhammad
Lucas S.S. Santos
2.1 Introduction
27(2)
2.2 Supercapacitors
29(2)
2.2.1 Electrochemical Supercapacitor
29(1)
2.2.2 Flexible Supercapacitors
30(1)
2.3 Shape Dependent Flexible Electrodes
31(3)
2.3.1 Porous 3D Flexible Electrodes
32(1)
2.3.2 Flexible Paper Electrodes
32(1)
2.3.3 Flexible Fiber Electrodes
33(1)
2.4 Fiber Shape Electrodes (FE/FSC)
34(5)
2.4.1 Wrapping Fiber Shape Electrode/Supercapacitors
34(1)
2.4.2 Coaxial Fiber Shape Electrode/Supercapacitor
35(1)
2.4.3 Parallel Fiber Shape Electrode/Supercapacitor
36(1)
2.4.4 Twisted Fiber Shape Electrode/Supercapacitor
37(1)
2.4.5 Rolled Fiber Shape Electrode/Supercapacitors
38(1)
2.5 Conclusion
39(4)
References
40(3)
3 Graphene-Based Electrodes for Flexible Supercapacitors
43(16)
Jyoti Raghav
Sapna Raghav
Pallavi Jain
3.1 Introduction
43(1)
3.2 Type of SCs
44(2)
3.2.1 EDLC
44(1)
3.2.2 PCs
45(1)
3.2.3 Flexible Graphene-Based Nano Composites
45(1)
3.3 Fabrication Techniques for the Electrode Materials
46(2)
3.3.1 Electrodeposition
46(1)
3.3.2 Direct Coating (DC)
46(2)
3.3.3 Chemical Vapor Deposition (CVD)
48(1)
3.3.4 Hydrothermal
48(1)
3.4 Substrate Materials for the Flexible SCs
48(1)
3.5 Graphene Nanocomposite-Based Electrode Materials
49(3)
3.5.1 Additives/Graphene Electrodes
49(1)
3.5.2 Binder/Graphene Electrodes
49(1)
3.5.3 Pure Graphene Electrode
50(1)
3.5.4 Conductive Polymers/Graphene Composites Electrode
50(1)
3.5.5 Metal or Metal Oxides (MOs) Composite Electrodes
51(1)
3.6 NSs for the Flexible SC
52(1)
3.7 Conclusion
53(6)
Acknowledgment
54(1)
References
54(5)
4 Polymer-Based Flexible Substrates for Flexible Supercapacitors
59(36)
Zul Adlan Mohd Hir
Shaari Daud
Hartini Ahmad Rafaie
Nurul Infaza Talalah Ramli
Mohamad Azvwa Mohamed
4.1 Introduction
60(1)
4.2 Polymers-Based Flexible Materials for Flexible Supercapacitors
61(1)
4.3 Synthesis and Fabrication Approach of the Polymer-Based Electrode
62(8)
4.3.1 Preparation of Polymer-Based Electrode Materials
62(1)
4.3.1.1 Polyaniline (PANI)
63(2)
4.3.1.2 Polypyrrole (PPy)
65(1)
4.3.1.3 Poly (3,4-ethylenedioxythiophene) (PEDOT)
66(3)
4.3.2 Electrode Fabrication
69(1)
4.4 Physicochemical Characterization of Flexible Supercapacitors
70(9)
4.4.1 Scanning Electron Microscopy
70(1)
4.4.2 Transmission Electron Microscopy
71(2)
4.4.3 X-Ray Diffraction
73(2)
4.4.4 Surface Area Analysis by BET (Brunauer, Emmett and Teller)
75(3)
4.4.5 X-Ray Photoelectron Spectroscopy (XPS)
78(1)
4.5 Recent Findings on the Performance of Flexible Supercapacitors
79(7)
4.5.1 Electrochemical Double-Layer Capacitor (EDLC)
80(1)
4.5.2 Pseudocapacitor
81(2)
4.5.3 Hybrid Supercapacitor
83(3)
4.6 Conclusion
86(9)
References
87(8)
5 Carbon Substrates for Flexible Supercapacitors and Energy Storage Applications
95(48)
Seyyed Mojtaba Mousavi
Seyyed Alireza Hashemi
Najmeh Parvin
Chin Wei Lai
Sonia Bahrani
Wei-Hung Chiang
Sargol Mazraedoost
5.1 Introduction
96(2)
5.2 Overview of the Energy Storage System
98(11)
5.3 Capacitors Modeling
109(15)
5.3.1 Equivalent Circuit Models
120(1)
5.3.2 Intelligent Models
121(1)
5.3.3 Self-Discharge
122(1)
5.3.4 Fractional-Order Models
122(1)
5.3.5 Thermal Modeling
123(1)
5.4 Industrial Applications of Capacitors
124(3)
5.4.1 Power Electronics
124(1)
5.4.2 Uninterruptible Power Supplies
125(1)
5.4.3 Hybrid Energy Storage
126(1)
5.5 Conclusions
127(16)
References
127(16)
6 Organic Electrolytes for Flexible Supercapacitors
143(34)
Younus Raza Beg
Gokul Ram Nishad
Priyanka Singh
6.1 Introduction
143(2)
6.2 Organic Electrolytes
145(5)
6.3 Solid and Quasi-Solid-State Electrolytes
150(9)
6.3.1 PVA-Based Gel Electrolytes
154(2)
6.3.2 PEG-Based Gel Electrolytes
156(1)
6.3.3 PVDF-Based Gel Electrolytes
157(2)
6.4 Ionic Liquids-Based Electrolytes
159(6)
6.5 Redox Active Electrolytes
165(2)
6.6 Conclusion
167(10)
References
170(7)
7 Carbon-Based Electrodes for Flexible Supercapacitors Beyond Graphene
177(34)
Sunil Kumar
Rashmi Madhuri
7.1 Introduction
178(1)
7.2 Materials Used to Prepare Flexible Supercapacitors
179(3)
7.2.1 Carbon Materials
180(1)
7.2.1.1 Activated Carbon (AC)
180(1)
7.2.1.2 Carbon Nanotubes (CNTs)
180(1)
7.2.1.3 Graphene
181(1)
7.2.1.4 Carbon Aerogel
181(1)
7.2.2 Conducting Polymer
181(1)
7.2.3 Metal Oxide
182(1)
7.3 The Carbon-Based Electrode Used for Flexible Supercapacitors
182(19)
7.3.1 Carbon Nanotube (CNT)-Based Materials
182(1)
7.3.1.1 CNT-Conducting Polymer Composite as Supercapacitors
182(3)
7.3.1.2 CNT-Metal Oxide Composite as Supercapacitors
185(6)
7.3.2 Activated Carbon-Based Materials
191(1)
7.3.2.1 Activated Carbon-Conducting Polymer Composite as a Supercapacitor
191(4)
7.3.2.2 Activated Carbon-Metal Oxide Composite as a Supercapacitor
195(6)
7.4 Conclusion
201(10)
References
201(10)
8 Biomass-Derived Electrodes for Flexible Supercapacitors
211(22)
Selvasundarasekar Sam Sankar
Subrata Kundu
8.1 Introduction
211(3)
8.1.1 Electrode Materials for Flexible Supercapacitors
213(1)
8.2 Biomass-Derived Carbon Materials
214(6)
8.2.1 Activation
214(1)
8.2.1.1 Physical Activation
215(1)
8.2.1.2 Chemical Activation
215(3)
8.2.1.3 Other Activation
218(1)
8.2.2 Carbonization
218(1)
8.2.2.1 Hydrothermal Method
218(1)
8.2.2.2 Pyrolysis Method
219(1)
8.3 Incorporation of Biomass-Based Electrodes in Flexible Supercapacitors
220(2)
8.4 Challenges for Using Biomass-Derived Materials
222(2)
8.5 Conclusion
224(9)
References
225(8)
9 Conducting Polymer Electrolytes for Flexible Supercapacitors
233(30)
Aqib Muzaffar
M. Basheer Ahamed
Kalim Deshmukh
9.1 Introduction
234(2)
9.2 Components of a Supercapacitor
236(4)
9.2.1 Electrodes
236(1)
9.2.2 Electrolytes
237(1)
9.2.3 Separator
238(1)
9.2.4 Current Collectors
239(1)
9.2.5 Sealants
239(1)
9.3 Configuration of a Supercapacitor
240(1)
9.4 Conducting Polymer Electrolytes
241(11)
9.4.1 Gel Conducting Polymer Electrolytes
243(3)
9.4.2 Ionic Liquid-Based Conducting Polymer
246(1)
9.4.3 OH- Ion Conducting Polymers
247(5)
9.5 Conclusion
252(11)
References
252(11)
10 Inorganic Electrodes for Flexible Supercapacitor
263(14)
Muhammad Inam Khan
Faiza Bibi
Muhammad Mudassir Hassan
Nawshad Muhammad
Muhammad Tariq
Abdur Rahim
10.1 Introduction
264(1)
10.2 Flexible Inorganic Electrode Based on Carbon Nanomaterial
265(7)
10.2.1 Carbonaceous Material
265(1)
10.2.1.1 Graphene
266(2)
10.2.1.2 Graphene Oxide-Based Electrodes
268(1)
10.2.1.3 Carbon Nanotubes
269(2)
10.2.1.4 Carbon Films/Textiles
271(1)
10.3 Conclusion
272(5)
References
273(4)
11 New-Generation Materials for Flexible Supercapacitors
277(38)
P.E. Lokhande
U.S. Chavan
Suraj Bhosale
Amol Kalam
Sonal Deokar
11.1 Introduction
277(1)
11.2 Taxonomy of Supercapacitor
278(2)
11.3 Fundamentals of Supercapacitor
280(2)
11.4 Flexible Supercapacitor
282(16)
11.4.1 Graphene-Based Flexible Supercapacitor
282(2)
11.4.2 Metal Oxide/Hydroxide-Based Flexible Supercapacitor
284(6)
11.4.3 Conducting Polymer-Based Flexible Supercapacitor
290(8)
11.5 Outlook and Perspectives
298(17)
Acknowledgement
303(1)
References
303(12)
12 Asymmetric Flexible Supercapacitors: An Overview of Principle, Materials and Mechanism
315(34)
Sabina Yeasmin
Debajyoti Mahanta
12.1 Introduction: Why Store Energy?
316(1)
12.2 Supercapacitor: A Green Approach Towards Energy Storage
316(3)
12.3 Flexible Supercapacitors
319(6)
12.3.1 Solid Electrolytes
320(2)
12.3.2 Flexible Electrodes
322(2)
12.3.3 Cell Designs for Flexible Supercapacitor
324(1)
12.4 Asymmetric Supercapacitor
325(8)
12.4.1 Principle, Material and Mechanism
325(5)
12.4.2 Performance Evaluation in Asymmetric Supercapacitor
330(3)
12.5 Recent Advances in Flexible Asymmetric Supercapacitors
333(2)
12.6 Conclusion
335(14)
References
335(14)
13 Aqueous Electrolytes for Flexible Supercapacitors
349(64)
Dipanwita Majumdar
13.1 Introduction
350(7)
13.1.1 Influence of Electrolytes on Performance of Supercapacitors
352(2)
13.1.2 What is an Ideal Electrolyte?
354(1)
13.1.3 Classes of Electrolytes for Supercapacitors
355(2)
13.2 Electrolyte Performance-Controlling Parameters for Designing Flexible Supercapacitors
357(5)
13.2.1 Large Electrochemical Stability
357(1)
13.2.2 High Ionic Conductivity
357(1)
13.2.3 Nature of Electrolyte
358(1)
13.2.4 Dielectric Constant and Viscosity of Solvent
358(1)
13.2.5 Low Melting and High Boiling Points
359(1)
13.2.6 High Chemical Stability
360(1)
13.2.7 High Flash Point
360(1)
13.2.8 Low Cost and Availability
360(1)
13.2.9 Influence of Pressure
360(1)
13.2.10 Influence of Binder
361(1)
13.3 Why Aqueous Electrolytes?
362(1)
13.4 Acid Electrolytes
363(15)
13.4.1 EDLC and Pseudocapacitor Electrode Materials Employing H2SO4 Aqueous Electrolyte
375(2)
13.4.2 H2S04 Electrolyte-Based Nanocomposite Electrode Material Supercapacitors
377(1)
13.4.3 H2S04 Electrolyte-Based Hybrid Supercapacitors
377(1)
13.5 Alkaline Electrolytes
378(5)
13.5.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors
379(2)
13.5.2 Alkaline Electrolyte-Based Nanocomposite Supercapacitors
381(2)
13.5.3 Alkaline Electrolyte-Based Hybrid Supercapacitors
383(1)
13.6 Neutral Electrolyte
383(5)
13.6.1 Neutral Salt Aqueous Electrolyte-Based EDLC and Pseudocapacitors
384(3)
13.6.2 Neutral Salt Aqueous Electrolyte-Based Nanocomposite Supercapacitors
387(1)
13.6.3 Neutral Electrolyte-Based Hybrid Supercapacitors
388(1)
13.7 Comparative Electrochemical Performances in Different Aqueous Electrolytes
388(6)
13.8 Water-in-Salt Electrolytes for Flexible Supercapacitors
394(1)
13.9 Conclusion and Future Prospects
395(18)
Acknowledgements
396(1)
References
396(17)
14 Electrodes for Flexible Micro-Supercapacitors
413(48)
Subrata Ghosh
Jiacheng Wang Gustavo Tontini
Suelen Barg
14.1 Introduction
413(1)
14.2 Electrode Configurations
414(7)
14.2.1 Sandwich uSCs
414(1)
14.2.2 Fiber or Wire uSC
415(1)
14.2.2.1 Parallel
416(1)
14.2.2.2 Twisted or Two-Ply
417(1)
14.2.2.3 Coaxial
417(1)
14.2.2.4 Rolled
417(1)
14.2.2.5 All-in-One
418(1)
14.2.3 Interdigitated uSCs
418(3)
14.3 Manufacturing Techniques
421(10)
14.3.1 Photolithography
421(1)
14.3.2 Electrodeposition
422(1)
14.3.3 Laser Direct-Writing
422(1)
14.3.3.1 Laser Carving
423(1)
14.3.3.2 Laser Scribing
423(1)
14.3.3.3 Laser Transfer Method
424(1)
14.3.4 Printing
425(1)
14.3.4.1 Screen Printing
426(1)
14.3.4.2 Inkjet Printing
427(1)
14.3.4.3 3D Printing
428(3)
14.4 State-of-the-Art Electrode Materials
431(14)
14.4.1 Nanocarbons
431(2)
14.4.2 MXenes
433(2)
14.4.3 Transition-Metal Chalcogenides
435(1)
14.4.4 Metal-Based Materials
435(3)
14.4.5 Conducting Polymers
438(2)
14.4.6 Composites or Hybrid Structures
440(1)
14.4.7 Symmetric vs Asymmetric
441(4)
14.5 Conclusion and Outlook
445(16)
Acknowledgement
446(1)
References
447(14)
15 Electrodes for Flexible Self-Healable Supercapacitors
461(24)
Ayesha Taj
Rabisa Zia
Sumaira Younis
Hunza Hayat
Waheed S. Khan
Sadia Z. Bajwa
15.1 Introduction
462(6)
15.1.1 Supercapacitors
463(1)
15.1.2 Electric Double Layer Capacitors (EDLCs)
464(3)
15.1.3 Hybrid Capacitors
467(1)
15.2 Self-Healable Nanomaterials
468(4)
15.2.1 Metallic Nanomaterials
468(2)
15.2.2 Non-Metallic/Carbon-Based Nanomaterials
470(1)
15.2.3 Conducting Polymer-Based Nanomaterials
471(1)
15.3 Nanomaterials-Based Interfaces for Supercapacitors
472(7)
15.3.1 Metal Nanomaterials-Based Interfaces for Supercapacitors
473(1)
15.3.2 Graphene-Based Interfaces for Self-Healable Supercapacitors
474(4)
15.3.3 CNT/GO/PANI Composites Supercapacitors
478(1)
15.4 Conclusion
479(6)
References
480(5)
16 Electrodes for Flexible-Stretchable Supercapacitors
485(48)
Ravi Arukula
Rowan K. Kahol
Ram K. Gupta
16.1 Introduction
486(4)
16.1.1 Supercapacitors and Energy Storage Mechanisms
487(2)
16.1.2 Flexible/Stretchable Supercapacitors
489(1)
16.2 Electrodes for Flexible/Stretchable Supercapacitors
490(21)
16.2.1 Metal Oxide-Based Flexible/Stretchable Supercapacitors
491(2)
16.2.1.1 Vanadium-Based Flexible Electrodes
493(1)
16.2.1.2 Manganese - Based Flexible/Stretchable Electrodes
494(2)
16.2.1.3 Ruthenium-Based Flexible Electrodes
496(2)
16.2.1.4 Other Metal Oxides-Based Flexible Electrodes
498(1)
16.2.2 2D Materials-Based Flexible/Stretchable Supercapacitors
499(5)
16.2.3 Carbon-Based Flexible/Stretchable Supercapacitors
504(1)
16.2.4 Conductive Polymer-Based Flexible/Stretchable Supercapacitors
505(2)
16.2.5 Hybrid Composites-Based Flexible/Stretchable Supercapacitors
507(4)
16.3 Conclusion and Future Remarks
511(22)
References
512(21)
17 Fabrication Approaches of Energy Storage Materials for Flexible Supercapacitors
533(16)
Mohan Kumar Anand Raj
Rajasekar Rathanasamy
Prabhakaran Paramasivam
Santhosh Sivaraj
Abbreviations 533(16)
17.1 Intoduction
534(2)
17.2 Classification of Flexible Supercapacitors
536(8)
17.2.1 Materials
536(1)
17.2.1.1 Carbon
536(1)
17.2.1.2 Metal Oxides
537(1)
17.2.1.3 Conducting Polymers
537(1)
17.2.1.4 Composites
537(1)
17.2.2 Fabrication Methods
538(1)
17.2.2.1 Electro-Chemical Deposition Method
538(1)
17.2.2.2 Chemical Bath Deposition (CBD) Process
539(1)
17.2.2.3 Inkjet Printing
540(1)
17.2.2.4 Spray Deposition Method
541(1)
17.2.2.5 Sol-Gel Technique
542(1)
17.2.2.6 Direct Writing Method
543(1)
17.3 Conclusion
544(5)
References
545(4)
18 Nature-Inspired Electrodes for Flexible Supercapacitors
549(26)
Aqib Muzaffar
M. Basheer Ahamed
Kalim Deshmukh
18.1 Introduction
549(3)
18.2 Energy Storing Mechanism of Supercapacitors
552(5)
18.2.1 Electrostatic Double Layer Capacitor (EDLC)
554(1)
18.2.2 Pseudocapacitor
555(1)
18.2.3 Hybrid Supercapacitor
556(1)
18.3 Flexible Supercapacitors
557(3)
18.4 Essential Parameters of Supercapacitors
560(1)
18.4.1 Energy Density Parameter
560(1)
18.4.2 Power Density Parameter
561(1)
18.5 Natural Flexible Supercapacitors
561(4)
18.6 Conclusion
565(10)
References
565(10)
19 Ionic Liquid Electrolytes for Flexible Supercapacitors
575(36)
Udaya Bhat K.
Devadas Bhat Panemangalore
Abbreviations
575(2)
19.1 Introduction
577(1)
19.2 Mobile Energy Storage Systems and Supercapacitors
578(2)
19.3 Flexible Supercapacitors: Need and Challenges
580(1)
19.4 Developments in the Design of a Supercapacitor
581(2)
19.5 Electrolytes for Flexible Supercapacitors
583(3)
19.5.1 Aqueous Electrolytes
583(1)
19.5.2 Solid Electrolytes
584(1)
19.5.3 Liquid Electrolytes
584(1)
19.5.4 Ionic Liquid (IL) Electrolytes
585(1)
19.6 Gel Polymer Electrolytes (GPEs)
586(2)
19.7 Development in ILEs
588(6)
19.8 Design Flexibility With IL Electrolytes
594(2)
19.9 Electrolyte-Electrode Hybrid Design
596(1)
19.10 Ionic Liquid Electrolytes and Problem of Leakage
597(1)
19.11 Mechanical Stability of ILs
597(1)
19.12 Conclusions
598(13)
References
598(13)
20 Conducting Polymer-Based Flexible Supercapacitor Devices
611(15)
Anand I. Torvi
Satishkumar R. Naik
Sachin N. Hegde
Mohemmedumar Mulla
Ravindra R. Kamble
Geoffrey R. Mitchell
Mahadevappa Y. Kariduraganavar
20.1 Introduction
612(1)
20.2 Principles of Supercapacitor
612(1)
20.3 Classification of Supercapacitors
613(2)
20.3.1 Electrochemical Double-Layer Capacitors
613(1)
20.3.2 Pseudocapacitors
613(1)
20.3.2.1 Conducting Polymers
614(1)
20.4 Conducting Polymer-Based Flexible Supercapacitors
615(9)
20.4.1 Polyaniline-Based Flexible Supercapacitors
616(2)
20.4.2 Polypyrrole-Based Flexible Supercapacitors
618(3)
20.4.3 Polythiophene and its Derivatives-Based Flexible Supercapacitors
621(3)
20.5 Electrolytes for Flexible Supercapacitors
624(2)
20.6 Conclusions and Future Perspectives
626(1)
Acknowledgements 626(1)
References 626(9)
Index 635
Inamuddin PhD is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy and environmental science. He has published about 150 research articles in various international scientific journals, 18 book chapters, and edited 60 books with multiple well-known publishers.

Mohd Imran Ahamed PhD is in the Department of Chemistry, Aligarh Muslim University, Aligarh, India. He has published several research and review articles in SCI journals. His research focuses on ion-exchange chromatography, wastewater treatment and analysis, actuators and electrospinning.

Rajender Boddula PhD is currently working for the Chinese Academy of Sciences Presidents International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals, edited books with numerous publishers and has authored 20 book chapters.

Tariq Altalhi PhD is Head of the Department of Chemistry and Vice Dean of Science College at Taif University, Saudi Arabia. He received his PhD from the University of Adelaide, Australia in 2014. His research interests include developing advanced chemistry-based solutions for solid and liquid municipal waste management, converting plastic bags to carbon nanotubes, and fly ash to efficient adsorbent material.