Atjaunināt sīkdatņu piekrišanu

E-grāmata: Flexible Supercapacitors: Materials and Applications

Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Izdošanas datums: 22-Mar-2022
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119506157
  • Formāts - EPUB+DRM
  • Cena: 193,85 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 22-Mar-2022
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119506157

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"This book includes chapters from leading scientists working in the field of flexible SCs. As well as summarizing the current research work; the book systematically introduces SCs, from fundamental understanding to electrode materials to devices, represented by on-chip micro-supercapacitors (MSCs) and fiber SCs. The latest progress and advantages of stretchable and healable SCs for wearable devices are also covered. Lastly, the book concludes with the problems and challenges encountered in the development of flexible SC devices and also puts forward corresponding suggestions and perspectives"--

FLEXIBLE SUPERCAPACITORS

Comprehensive coverage of the latest advancements in flexible supercapacitors

In Flexible Supercapacitors: Materials and Applications, a team of distinguished researchers deliver a comprehensive and insightful exploration of the foundational principles and real-world applications of flexible supercapacitors. This edited volume includes contributions from leading scientists working in the field of flexible supercapacitors.

The book systematically summarizes the most recent research in the area, and covers fundamental concepts of electrode materials and devices, including on-chip microsupercapacitors and fiber supercapacitors. The latest progress and advancements in stretchable supercapacitors and healable supercapacitors are also discussed, as are problems and challenges commonly encountered in the development of flexible supercapacitors. The book concludes with suggestions and fresh perspectives on future research in this rapidly developing field.

Flexible Supercapacitors: Materials and Applications also offers:

  • A thorough introduction to the fundamentals of supercapacitors, including their materials and devices
  • Comprehensive explorations of flexible fiber supercapacitors and two-dimensional materials for flexible supercapacitors
  • In-depth examinations of flexible supercapacitors with metal oxides-based electrodes and flexible on-chip microsupercapacitors
  • Practical discussions of stretchable and healable supercapacitors, as well as patterned nanostructured electrodes

Perfect for researchers in the fields of materials science, physics, and electrical engineering, Flexible Supercapacitors: Materials and Applications is also an ideal reference for developers interested in supercapacitor design, materials, and devices.

List of Contributors xi
Preface xv
1 Flexible Asymmetric Supercapacitors: Design, Progress, and Challenges 1(18)
Dun Lin
Xiyue Zhang
Xihong Lu
1.1 Introduction
1(2)
1.2 Configurations of AFSCs Device
3(1)
1.3 Progress of Flexible AFSCs
4(9)
1.3.1 Sandwich-Type AFSCs
4(5)
1.3.1.1 Carbon-Based Anodes
5(1)
1.3.1.2 Transition Metal Oxide Anodes
6(1)
1.3.1.3 Transition Metal Nitride Anodes
7(2)
1.3.1.4 Conductive Polymer Anodes
9(1)
1.3.2 Fiber-Type ASCs
9(11)
1.3.2.1 Parallel-Type Fiber AFSCs
9(1)
1.3.2.2 Wrap-Type Fiber AFSCs
10(2)
1.3.2.3 Coaxial-Helix-Type Fiber AFSCs
12(1)
1.3.2.4 Two-Ply-Yarn-Type AFSCs
13(1)
1.4 Summary
13(2)
References
15(4)
2 Stretchable Supercapacitors 19(34)
La Li
Guozhen Shen
2.1 Overview of Stretchable Supercapacitors
19(1)
2.2 Fabrication of Stretchable Supercapacitor
20(20)
2.2.1 Structures of Stretchable Fiber-Shaped SCs
20(9)
2.2.1.1 Fabrication of Stretchable Parallel SCs
23(2)
2.2.1.2 Fabrication of Stretchable Twisted SCs
25(2)
2.2.1.3 Fabrication of Stretchable Coaxial SCs
27(2)
2.2.2 Planar Stretchable SCs
29(7)
2.2.2.1 Fabrication of the Stretchable Planar SCs with Sandwich Structure
29(1)
2.2.2.2 Omnidirectionally Stretchable Planar SCs
29(4)
2.2.2.3 Stretchable On-Chip Micro Supercapacitors (MSCs)
33(3)
2.2.3 3D Stretchable SCs
36(4)
2.2.3.1 Cellular Structure
36(2)
2.2.3.2 Editable SCs
38(2)
2.3 Multifunctional Supercapacitor
40(8)
2.3.1 Compressible SCs
40(2)
2.3.2 Self-Healable SCs
42(1)
2.3.3 Stretchable Integrated System
42(5)
2.3.4 Perspective
47(1)
References
48(5)
3 Fiber-shaped Supercapacitors 53(38)
Mengmeng Hu
Qingjiang Liu
Yao Liu
Jiaqi Wang
Jie Liu
Panpan Wang
Hua Wang
Yan Huang
3.1 Introduction
53(1)
3.2 Structure of FSSCs
54(1)
3.3 Electrolyte
55(3)
3.4 Electrode
58(6)
3.4.1 Carbon-Based Materials
58(1)
3.4.2 Conducting Polymers
59(2)
3.4.3 Metal-Based Materials
61(1)
3.4.4 Mxenes
62(1)
3.4.5 Metal Organic Frameworks (MOFs)
62(1)
3.4.6 Polyoxometalates (POMs)
63(1)
3.4.7 Black Phosphorus (BP)
64(1)
3.5 Electrode Design of FSSCs
64(10)
3.5.1 Metal-Fiber Supported Electrode
64(3)
3.5.2 Carbon Materials Based Fiber Supported Electrode
67(6)
3.5.2.1 Carbon Fiber
69(1)
3.5.2.2 CNT Fiber
69(3)
3.5.2.3 Graphene Fiber
72(1)
3.5.3 Cotton Fiber Supported Electrode
73(1)
3.6 Functionalized FSSCs
74(7)
3.6.1 Self-Healable FSSCs
74(2)
3.6.2 Stretchable FSSCs
76(1)
3.6.3 Electrochromic FSSCs
77(3)
3.6.4 Shape-Memory FSSCs
80(1)
3.6.5 Photodetectable FSSCs
80(1)
3.7 Conclusion
81(2)
References
83(8)
4 Flexible Fiber-shaped Supercapacitors: Fabrication, Design and Applications 91(30)
Muhammad S. Javed
Peng Sun
Muhammad Imran
Wenjie Mai
4.1 Introduction to Fiber-Shaped Supercapacitors
91(2)
4.2 Emerging Techniques for the Fabrication of Fiber-Shaped Electrodes
93(2)
4.2.1 Wet Spinning Method
93(2)
4.2.2 Spray/Cast-Coating Method
95(1)
4.2.3 Hydrothermal Method
95(1)
4.3 Structures and Design/Configuration of Fiber-Shaped Electrodes
95(9)
4.3.1 Parallel-Fiber Electrodes
95(1)
4.3.2 Twisted-Fiber Electrodes
96(4)
4.3.3 Coaxial-Fiber Electrodes
100(2)
4.3.4 Rolled-Fiber Electrodes
102(2)
4.4 Materials for Fiber-shaped Supercapacitors
104(5)
4.4.1 Carbon-Based Materials for FFSC
104(3)
4.4.2 Metal Oxides and Their Composites-Based Materials for FFSC
107(2)
4.5 Electrolytes for Fiber-Shaped Supercapacitors
109(1)
4.6 Performance Evaluation Metrics for Fiber-Shaped Supercapacitors
110(1)
4.7 Applications
111(2)
4.8 Conclusion and Future Prospectus
113(1)
Acknowledgments
114(1)
References
114(7)
5 Flexible Supercapacitors Based on Ternary Metal Oxide (Sulfide, Selenide) Nanostructures 121(36)
Qiufan Wang
Daohong Zhang
Guozhen Shen
5.1 Introduction
121(2)
5.1.1 Background of Electrochemical Capacitors
121(1)
5.1.2 Performance Evaluation of SCs
122(1)
5.2 Ternary Metal Oxide
123(8)
5.2.1 1D Ternary Metal Oxide Nanostructured Electrodes
123(2)
5.2.2 2D Ternary Metal Oxide Nanostructured Electrodes
125(2)
5.2.3 3D Ternary Oxide Electrodes
127(1)
5.2.4 Core-Shell Ternary Metal Oxide Composite Electrode
128(3)
5.2.4.1 Core-Shell Nanoarrays
128(3)
5.3 Metal Sulfide Electrodes
131(12)
5.3.1 1D Metal Sulfide Electrodes
132(1)
5.3.2 2D Metal Sulfide Electrodes
133(2)
5.3.3 3D Metal Sulfide Electrodes
135(1)
5.3.4 Metal Sulfide Composite Electrodes
135(8)
5.4 Metal Selenide Electrodes
143(4)
5.4.1 1D Metal Selenide
144(1)
5.4.2 2D Metal Selenide Electrodes
145(1)
5.4.3 3D Metal Selenide Electrodes
146(1)
5.5 Fiber-Shaped SCs
147(5)
5.6 Summary and Perspectives
152(2)
Declaration of Competing Interest
154(1)
Acknowledgments
154(1)
References
154(3)
6 Transition Metal Oxide Based Electrode Materials for Supercapacitors 157(22)
Xiang Wu
6.1 Introduction
157(1)
6.2 Co3O4 Electrode Materials
158(5)
6.3 NiO Electrode Materials
163(1)
6.4 Fe2O3 Electrode Materials
164(5)
6.5 MnO2 Electrode Materials
169(5)
6.6 V2O5 Electrode Materials
174(2)
References
176(3)
7 Three-Dimensional Nanoarrays for Flexible Supercapacitors 179(26)
Jing Xu
List of Abbreviations
179(1)
7.1 Introduction
180(1)
7.2 Fabrication of 3D Nanoarrays
181(5)
7.2.1 Selection of Substrates
181(1)
7.2.1.1 Metal Foils
181(1)
7.2.1.2 Polymeric Films
181(1)
7.2.1.3 Textile-Like Materials
181(1)
7.2.2 Synthesis Methods of Flexible 3D Nanoarrays
182(4)
7.2.2.1 Flexible 3D Nanoarray Electrodes Fabricated by Hydrothermal Methods
182(1)
7.2.2.2 Flexible 3D Nanoarray Electrodes Fabricated by CVD/Sputtering Methods
183(1)
7.2.2.3 Flexible 3D Nanoarray Electrodes Fabricated by Electrochemical Deposition Methods
183(3)
7.3 Typical Structural Engineering of 3D Nanoarrays for Flexible Supercapacitors
186(12)
7.3.1 Basic 3D Nanoarrays for Flexible Supercapacitors
188(6)
7.3.1.1 Flexible Electrical Double-Layer Capacitors
188(1)
7.3.1.2 Flexible Pseudocapacitors
189(5)
7.3.2 Hybrid 3D Nanoarrays for Flexible Supercapacitors
194(4)
7.3.2.1 Doping of Heteroatoms and Anchoring of Functional Groups
194(1)
7.3.2.2 Pre-Intercalation of Heteroatoms
194(1)
7.3.2.3 Coaxial Branched and Core-Shell 3D Hybrid Nanostructures
195(3)
7.4 Evaluation of Flexible Supercapacitors
198(2)
7.4.1 Bending Deformation
198(1)
7.4.2 Stretching Deformation
198(2)
7.4.3 Twisting Deformation
200(1)
7.5 Conclusion
200(1)
Acknowledgments
201(1)
References
201(4)
8 Metal Oxides Nanoarray Electrodes for Flexible Supercapacitors 205(30)
Ting Meng
Cao Guan
8.1 Introduction
205(2)
8.2 Synthesis Techniques of Metal Oxide Nanoarrays
207(6)
8.2.1 Solution-based Route
207(3)
8.2.2 Electrodeposition Growth
210(1)
8.2.3 Chemical Vapor Deposition
210(3)
8.3 The Flexible Support Substrate for Loading Nanoarrays
213(7)
8.3.1 3D Porous Graphene Foam
213(1)
8.3.2 Carbon Cloth Current Collectors
213(2)
8.3.3 Metal Conductive Substrates
215(5)
8.4 The Geometry of Nanostructured Arrays
220(8)
8.4.1 The 1D Nanostructured Arrays
221(3)
8.4.2 The 2D Nanostructured Arrays
224(2)
8.4.3 The Integration of 1D@2D Nanoarrays
226(2)
8.5 Conclusions and Prospects
228(2)
References
230(5)
9 Printed Flexible Supercapacitors 235(26)
Yizhou Zhang
Wen-Yong Lai
List of Abbreviations
235(1)
9.1 Overview of Printed Flexible Supercapacitor
236(2)
9.2 Devices Structure of Printed SCs
238(1)
9.3 Printable Materials for SCs
239(5)
9.3.1 Electrodes Materials
239(2)
9.3.1.1 Carbon-Based Materials
239(1)
9.3.1.2 Metal Oxides
240(1)
9.3.1.3 2D Transition Metal Carbides, Nitrides, and Carbonitrides (MXenes)
240(1)
9.3.1.4 Metal-Organic Frameworks (MOFs)
241(1)
9.3.2 Electrolytes
241(2)
9.3.2.1 Aqueous Gel Polymer Electrolytes
242(1)
9.3.2.2 Organic Gel Polymer Electrolytes
242(1)
9.3.2.3 Ionic Liquid-Based Gel Polymer Electrolytes
242(1)
9.3.2.4 Redox-Active Gel Electrolytes
243(1)
9.3.3 Flexible Substrates
243(1)
9.3.3.1 Metal Substrates
243(1)
9.3.3.2 Synthetic Polymer-Based Substrates
243(1)
9.4 Fabrication of Flexible SCs Using Various Printing Methods
244(10)
9.4.1 Inkjet Printing
244(3)
9.4.2 Screen Printing
247(2)
9.4.3 Transfer Printing
249(2)
9.4.4 3D Printing
251(3)
9.5 Printed Integrated System
254(1)
9.6 Perspective
255(2)
Acknowledgments
257(1)
References
258(3)
10 Printing Flexible On-chip Micro-Supercapacitors 261(22)
Guozhen Shen
10.1 Introduction
261(1)
10.2 Printable Materials for On-chip MSCs
262(8)
10.2.1 Printable Electrode Materials
262(5)
10.2.2 Printable Current Collector
267(2)
10.2.3 Printable Electrolyte
269(1)
10.3 Printing Techniques
270(7)
10.3.1 Inkjet Printing
270(3)
10.3.2 Spray Printing
273(1)
10.3.3 Screen Printing
274(1)
10.3.4 3D Printing
275(2)
10.4 Summary
277(1)
References
277(6)
11 Recent Advances of Flexible Micro-Supercapacitors 283(30)
Songshan Bi
Hongmei Cao
Rui Wang
Zhiqiang Niu
11.1 Introduction
283(1)
11.2 General Features of Flexible MSCs
284(2)
11.3 Active Materials of Flexible MSCs
286(12)
11.3.1 Graphene-based Materials
287(3)
11.3.2 CNT-based Materials
290(3)
11.3.3 Other Carbon-based Materials
293(1)
11.3.4 Transition Metal Oxides and Hydroxides
293(3)
11.3.5 MXenes
296(1)
11.3.6 Conductive Polymer
297(1)
11.4 Integration of Flexible MSCs
298(4)
11.4.1 Flexible Self-charging MSCs
298(1)
11.4.2 Flexible Self-powering MSCs
298(4)
11.5 Flexible Smart MSCs
302(3)
11.5.1 Flexible Self-healing MSCs
302(1)
11.5.2 Flexible Electrochromic MSCs
302(2)
11.5.3 Flexible Photodetectable MSCs
304(1)
11.5.4 Flexible Thermoreversible Self-protecting MSCs
304(1)
11.6 Summary and Prospects
305(2)
References
307(6)
Index 313
Guozhen Shen, PhD, is Professor at the Institute of Semiconductors, Chinese Academy of Sciences, Beijing. His research is focused on flexible and printable electronics.

Zheng Lou, PhD, is Assistant Professor at the Institute of Semiconductors, Chinese Academy of Sciences, Beijing. His research focuses on printable and flexible electronics, like transistors, photodetectors, sensors, and energy storage devices.

Di Chen, PhD, is Professor at the University of Science and Technology in Beijing. Her research is focused on the design of nanoscale materials for energy applications.