List of Contributors |
|
xi | |
Preface |
|
xv | |
1 Flexible Asymmetric Supercapacitors: Design, Progress, and Challenges |
|
1 | (18) |
|
|
|
|
|
1 | (2) |
|
1.2 Configurations of AFSCs Device |
|
|
3 | (1) |
|
1.3 Progress of Flexible AFSCs |
|
|
4 | (9) |
|
1.3.1 Sandwich-Type AFSCs |
|
|
4 | (5) |
|
1.3.1.1 Carbon-Based Anodes |
|
|
5 | (1) |
|
1.3.1.2 Transition Metal Oxide Anodes |
|
|
6 | (1) |
|
1.3.1.3 Transition Metal Nitride Anodes |
|
|
7 | (2) |
|
1.3.1.4 Conductive Polymer Anodes |
|
|
9 | (1) |
|
|
9 | (11) |
|
1.3.2.1 Parallel-Type Fiber AFSCs |
|
|
9 | (1) |
|
1.3.2.2 Wrap-Type Fiber AFSCs |
|
|
10 | (2) |
|
1.3.2.3 Coaxial-Helix-Type Fiber AFSCs |
|
|
12 | (1) |
|
1.3.2.4 Two-Ply-Yarn-Type AFSCs |
|
|
13 | (1) |
|
|
13 | (2) |
|
|
15 | (4) |
2 Stretchable Supercapacitors |
|
19 | (34) |
|
|
|
2.1 Overview of Stretchable Supercapacitors |
|
|
19 | (1) |
|
2.2 Fabrication of Stretchable Supercapacitor |
|
|
20 | (20) |
|
2.2.1 Structures of Stretchable Fiber-Shaped SCs |
|
|
20 | (9) |
|
2.2.1.1 Fabrication of Stretchable Parallel SCs |
|
|
23 | (2) |
|
2.2.1.2 Fabrication of Stretchable Twisted SCs |
|
|
25 | (2) |
|
2.2.1.3 Fabrication of Stretchable Coaxial SCs |
|
|
27 | (2) |
|
2.2.2 Planar Stretchable SCs |
|
|
29 | (7) |
|
2.2.2.1 Fabrication of the Stretchable Planar SCs with Sandwich Structure |
|
|
29 | (1) |
|
2.2.2.2 Omnidirectionally Stretchable Planar SCs |
|
|
29 | (4) |
|
2.2.2.3 Stretchable On-Chip Micro Supercapacitors (MSCs) |
|
|
33 | (3) |
|
|
36 | (4) |
|
2.2.3.1 Cellular Structure |
|
|
36 | (2) |
|
|
38 | (2) |
|
2.3 Multifunctional Supercapacitor |
|
|
40 | (8) |
|
|
40 | (2) |
|
|
42 | (1) |
|
2.3.3 Stretchable Integrated System |
|
|
42 | (5) |
|
|
47 | (1) |
|
|
48 | (5) |
3 Fiber-shaped Supercapacitors |
|
53 | (38) |
|
|
|
|
|
|
|
|
|
|
53 | (1) |
|
|
54 | (1) |
|
|
55 | (3) |
|
|
58 | (6) |
|
3.4.1 Carbon-Based Materials |
|
|
58 | (1) |
|
3.4.2 Conducting Polymers |
|
|
59 | (2) |
|
3.4.3 Metal-Based Materials |
|
|
61 | (1) |
|
|
62 | (1) |
|
3.4.5 Metal Organic Frameworks (MOFs) |
|
|
62 | (1) |
|
3.4.6 Polyoxometalates (POMs) |
|
|
63 | (1) |
|
3.4.7 Black Phosphorus (BP) |
|
|
64 | (1) |
|
3.5 Electrode Design of FSSCs |
|
|
64 | (10) |
|
3.5.1 Metal-Fiber Supported Electrode |
|
|
64 | (3) |
|
3.5.2 Carbon Materials Based Fiber Supported Electrode |
|
|
67 | (6) |
|
|
69 | (1) |
|
|
69 | (3) |
|
|
72 | (1) |
|
3.5.3 Cotton Fiber Supported Electrode |
|
|
73 | (1) |
|
|
74 | (7) |
|
3.6.1 Self-Healable FSSCs |
|
|
74 | (2) |
|
|
76 | (1) |
|
3.6.3 Electrochromic FSSCs |
|
|
77 | (3) |
|
|
80 | (1) |
|
3.6.5 Photodetectable FSSCs |
|
|
80 | (1) |
|
|
81 | (2) |
|
|
83 | (8) |
4 Flexible Fiber-shaped Supercapacitors: Fabrication, Design and Applications |
|
91 | (30) |
|
|
|
|
|
4.1 Introduction to Fiber-Shaped Supercapacitors |
|
|
91 | (2) |
|
4.2 Emerging Techniques for the Fabrication of Fiber-Shaped Electrodes |
|
|
93 | (2) |
|
4.2.1 Wet Spinning Method |
|
|
93 | (2) |
|
4.2.2 Spray/Cast-Coating Method |
|
|
95 | (1) |
|
4.2.3 Hydrothermal Method |
|
|
95 | (1) |
|
4.3 Structures and Design/Configuration of Fiber-Shaped Electrodes |
|
|
95 | (9) |
|
4.3.1 Parallel-Fiber Electrodes |
|
|
95 | (1) |
|
4.3.2 Twisted-Fiber Electrodes |
|
|
96 | (4) |
|
4.3.3 Coaxial-Fiber Electrodes |
|
|
100 | (2) |
|
4.3.4 Rolled-Fiber Electrodes |
|
|
102 | (2) |
|
4.4 Materials for Fiber-shaped Supercapacitors |
|
|
104 | (5) |
|
4.4.1 Carbon-Based Materials for FFSC |
|
|
104 | (3) |
|
4.4.2 Metal Oxides and Their Composites-Based Materials for FFSC |
|
|
107 | (2) |
|
4.5 Electrolytes for Fiber-Shaped Supercapacitors |
|
|
109 | (1) |
|
4.6 Performance Evaluation Metrics for Fiber-Shaped Supercapacitors |
|
|
110 | (1) |
|
|
111 | (2) |
|
4.8 Conclusion and Future Prospectus |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
114 | (7) |
5 Flexible Supercapacitors Based on Ternary Metal Oxide (Sulfide, Selenide) Nanostructures |
|
121 | (36) |
|
|
|
|
|
121 | (2) |
|
5.1.1 Background of Electrochemical Capacitors |
|
|
121 | (1) |
|
5.1.2 Performance Evaluation of SCs |
|
|
122 | (1) |
|
|
123 | (8) |
|
5.2.1 1D Ternary Metal Oxide Nanostructured Electrodes |
|
|
123 | (2) |
|
5.2.2 2D Ternary Metal Oxide Nanostructured Electrodes |
|
|
125 | (2) |
|
5.2.3 3D Ternary Oxide Electrodes |
|
|
127 | (1) |
|
5.2.4 Core-Shell Ternary Metal Oxide Composite Electrode |
|
|
128 | (3) |
|
5.2.4.1 Core-Shell Nanoarrays |
|
|
128 | (3) |
|
5.3 Metal Sulfide Electrodes |
|
|
131 | (12) |
|
5.3.1 1D Metal Sulfide Electrodes |
|
|
132 | (1) |
|
5.3.2 2D Metal Sulfide Electrodes |
|
|
133 | (2) |
|
5.3.3 3D Metal Sulfide Electrodes |
|
|
135 | (1) |
|
5.3.4 Metal Sulfide Composite Electrodes |
|
|
135 | (8) |
|
5.4 Metal Selenide Electrodes |
|
|
143 | (4) |
|
|
144 | (1) |
|
5.4.2 2D Metal Selenide Electrodes |
|
|
145 | (1) |
|
5.4.3 3D Metal Selenide Electrodes |
|
|
146 | (1) |
|
|
147 | (5) |
|
5.6 Summary and Perspectives |
|
|
152 | (2) |
|
Declaration of Competing Interest |
|
|
154 | (1) |
|
|
154 | (1) |
|
|
154 | (3) |
6 Transition Metal Oxide Based Electrode Materials for Supercapacitors |
|
157 | (22) |
|
|
|
157 | (1) |
|
6.2 Co3O4 Electrode Materials |
|
|
158 | (5) |
|
6.3 NiO Electrode Materials |
|
|
163 | (1) |
|
6.4 Fe2O3 Electrode Materials |
|
|
164 | (5) |
|
6.5 MnO2 Electrode Materials |
|
|
169 | (5) |
|
6.6 V2O5 Electrode Materials |
|
|
174 | (2) |
|
|
176 | (3) |
7 Three-Dimensional Nanoarrays for Flexible Supercapacitors |
|
179 | (26) |
|
|
|
179 | (1) |
|
|
180 | (1) |
|
7.2 Fabrication of 3D Nanoarrays |
|
|
181 | (5) |
|
7.2.1 Selection of Substrates |
|
|
181 | (1) |
|
|
181 | (1) |
|
|
181 | (1) |
|
7.2.1.3 Textile-Like Materials |
|
|
181 | (1) |
|
7.2.2 Synthesis Methods of Flexible 3D Nanoarrays |
|
|
182 | (4) |
|
7.2.2.1 Flexible 3D Nanoarray Electrodes Fabricated by Hydrothermal Methods |
|
|
182 | (1) |
|
7.2.2.2 Flexible 3D Nanoarray Electrodes Fabricated by CVD/Sputtering Methods |
|
|
183 | (1) |
|
7.2.2.3 Flexible 3D Nanoarray Electrodes Fabricated by Electrochemical Deposition Methods |
|
|
183 | (3) |
|
7.3 Typical Structural Engineering of 3D Nanoarrays for Flexible Supercapacitors |
|
|
186 | (12) |
|
7.3.1 Basic 3D Nanoarrays for Flexible Supercapacitors |
|
|
188 | (6) |
|
7.3.1.1 Flexible Electrical Double-Layer Capacitors |
|
|
188 | (1) |
|
7.3.1.2 Flexible Pseudocapacitors |
|
|
189 | (5) |
|
7.3.2 Hybrid 3D Nanoarrays for Flexible Supercapacitors |
|
|
194 | (4) |
|
7.3.2.1 Doping of Heteroatoms and Anchoring of Functional Groups |
|
|
194 | (1) |
|
7.3.2.2 Pre-Intercalation of Heteroatoms |
|
|
194 | (1) |
|
7.3.2.3 Coaxial Branched and Core-Shell 3D Hybrid Nanostructures |
|
|
195 | (3) |
|
7.4 Evaluation of Flexible Supercapacitors |
|
|
198 | (2) |
|
7.4.1 Bending Deformation |
|
|
198 | (1) |
|
7.4.2 Stretching Deformation |
|
|
198 | (2) |
|
7.4.3 Twisting Deformation |
|
|
200 | (1) |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
201 | (4) |
8 Metal Oxides Nanoarray Electrodes for Flexible Supercapacitors |
|
205 | (30) |
|
|
|
|
205 | (2) |
|
8.2 Synthesis Techniques of Metal Oxide Nanoarrays |
|
|
207 | (6) |
|
8.2.1 Solution-based Route |
|
|
207 | (3) |
|
8.2.2 Electrodeposition Growth |
|
|
210 | (1) |
|
8.2.3 Chemical Vapor Deposition |
|
|
210 | (3) |
|
8.3 The Flexible Support Substrate for Loading Nanoarrays |
|
|
213 | (7) |
|
8.3.1 3D Porous Graphene Foam |
|
|
213 | (1) |
|
8.3.2 Carbon Cloth Current Collectors |
|
|
213 | (2) |
|
8.3.3 Metal Conductive Substrates |
|
|
215 | (5) |
|
8.4 The Geometry of Nanostructured Arrays |
|
|
220 | (8) |
|
8.4.1 The 1D Nanostructured Arrays |
|
|
221 | (3) |
|
8.4.2 The 2D Nanostructured Arrays |
|
|
224 | (2) |
|
8.4.3 The Integration of 1D@2D Nanoarrays |
|
|
226 | (2) |
|
8.5 Conclusions and Prospects |
|
|
228 | (2) |
|
|
230 | (5) |
9 Printed Flexible Supercapacitors |
|
235 | (26) |
|
|
|
|
235 | (1) |
|
9.1 Overview of Printed Flexible Supercapacitor |
|
|
236 | (2) |
|
9.2 Devices Structure of Printed SCs |
|
|
238 | (1) |
|
9.3 Printable Materials for SCs |
|
|
239 | (5) |
|
9.3.1 Electrodes Materials |
|
|
239 | (2) |
|
9.3.1.1 Carbon-Based Materials |
|
|
239 | (1) |
|
|
240 | (1) |
|
9.3.1.3 2D Transition Metal Carbides, Nitrides, and Carbonitrides (MXenes) |
|
|
240 | (1) |
|
9.3.1.4 Metal-Organic Frameworks (MOFs) |
|
|
241 | (1) |
|
|
241 | (2) |
|
9.3.2.1 Aqueous Gel Polymer Electrolytes |
|
|
242 | (1) |
|
9.3.2.2 Organic Gel Polymer Electrolytes |
|
|
242 | (1) |
|
9.3.2.3 Ionic Liquid-Based Gel Polymer Electrolytes |
|
|
242 | (1) |
|
9.3.2.4 Redox-Active Gel Electrolytes |
|
|
243 | (1) |
|
9.3.3 Flexible Substrates |
|
|
243 | (1) |
|
|
243 | (1) |
|
9.3.3.2 Synthetic Polymer-Based Substrates |
|
|
243 | (1) |
|
9.4 Fabrication of Flexible SCs Using Various Printing Methods |
|
|
244 | (10) |
|
|
244 | (3) |
|
|
247 | (2) |
|
|
249 | (2) |
|
|
251 | (3) |
|
9.5 Printed Integrated System |
|
|
254 | (1) |
|
|
255 | (2) |
|
|
257 | (1) |
|
|
258 | (3) |
10 Printing Flexible On-chip Micro-Supercapacitors |
|
261 | (22) |
|
|
|
261 | (1) |
|
10.2 Printable Materials for On-chip MSCs |
|
|
262 | (8) |
|
10.2.1 Printable Electrode Materials |
|
|
262 | (5) |
|
10.2.2 Printable Current Collector |
|
|
267 | (2) |
|
10.2.3 Printable Electrolyte |
|
|
269 | (1) |
|
|
270 | (7) |
|
|
270 | (3) |
|
|
273 | (1) |
|
|
274 | (1) |
|
|
275 | (2) |
|
|
277 | (1) |
|
|
277 | (6) |
11 Recent Advances of Flexible Micro-Supercapacitors |
|
283 | (30) |
|
|
|
|
|
|
283 | (1) |
|
11.2 General Features of Flexible MSCs |
|
|
284 | (2) |
|
11.3 Active Materials of Flexible MSCs |
|
|
286 | (12) |
|
11.3.1 Graphene-based Materials |
|
|
287 | (3) |
|
11.3.2 CNT-based Materials |
|
|
290 | (3) |
|
11.3.3 Other Carbon-based Materials |
|
|
293 | (1) |
|
11.3.4 Transition Metal Oxides and Hydroxides |
|
|
293 | (3) |
|
|
296 | (1) |
|
11.3.6 Conductive Polymer |
|
|
297 | (1) |
|
11.4 Integration of Flexible MSCs |
|
|
298 | (4) |
|
11.4.1 Flexible Self-charging MSCs |
|
|
298 | (1) |
|
11.4.2 Flexible Self-powering MSCs |
|
|
298 | (4) |
|
|
302 | (3) |
|
11.5.1 Flexible Self-healing MSCs |
|
|
302 | (1) |
|
11.5.2 Flexible Electrochromic MSCs |
|
|
302 | (2) |
|
11.5.3 Flexible Photodetectable MSCs |
|
|
304 | (1) |
|
11.5.4 Flexible Thermoreversible Self-protecting MSCs |
|
|
304 | (1) |
|
11.6 Summary and Prospects |
|
|
305 | (2) |
|
|
307 | (6) |
Index |
|
313 | |