Atjaunināt sīkdatņu piekrišanu

Flow of Complex Mixtures in Pipes 2nd ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 848 pages, height x width x depth: 229x152x43 mm, weight: 1111 g
  • Izdošanas datums: 20-Sep-2021
  • Izdevniecība: Society of Petroleum Engineers
  • ISBN-10: 1555631398
  • ISBN-13: 9781555631390
  • Mīkstie vāki
  • Cena: 174,36 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 848 pages, height x width x depth: 229x152x43 mm, weight: 1111 g
  • Izdošanas datums: 20-Sep-2021
  • Izdevniecība: Society of Petroleum Engineers
  • ISBN-10: 1555631398
  • ISBN-13: 9781555631390
Preface vii
Preface to the SPE Printing ix
Acknowledgments xi
Recent Developments in the Flow of Gas/Liquid Mixtures in Pipes xiii
Errata xviii
List of Symbols
xxxiii
Classification and Characteristics of Complex Mixtures
1(66)
Introduction
1(1)
Classification of Complex Mixtures
2(1)
Phase Separation and Settling Behavior
3(20)
Introduction
3(1)
Terminal Settling Velocity
4(1)
Solid Particles
4(5)
Fluid Particles
9(1)
Irregularly Shaped Particles
10(2)
Effect of Tube Wall
12(1)
Effect of Concentration and Hindered Settling Velocity
13(6)
Pseudohomogeneous Fluids
19(2)
Recommended Design Procedure
21(2)
Classification of Single-Phase and Pseudohomogeneous Multiphase Mixtures
23(32)
Introduction
23(4)
Time-Independent Viscous Fluids
27(1)
Newtonian Fluids
27(2)
Pseudoplastic Fluids
29(3)
Dilatant Fluids
32(4)
Bingham Fluids
36(1)
Yield-Pseudoplastics
37(2)
Time-Dependent Viscous Fluids
39(1)
Introduction
39(2)
Thixotropic Fluids
41(5)
Rheopectic Fluids
46(2)
Viscoelastic Fluids
48(1)
Introduction
48(3)
Constitutive Equations
51(4)
Rheological Measurements and Interpretation of Data
55(8)
Viscometric Equipment
55(2)
Interpretation of Rheological Measurements
57(6)
Bibliography
63(4)
The Flow Properties of Fluids
67(52)
Introduction
67(1)
Density
68(20)
Single-Component Fluids
68(1)
General
68(3)
Gases
71(6)
Liquids
77(4)
Multicomponent Fluids
81(1)
General
81(1)
Gases
82(5)
Liquids
87(1)
Pseudohomogeneous Multiphase Systems
88(1)
Newtonian Viscosity
88(12)
Single-Component Fluids
88(1)
General
88(1)
Gases
89(5)
Liquids
94(1)
Multicomponent Gases
95(1)
Multicomponent Miscible Liquids
96(1)
Pseudohomogeneous Suspensions of Spherical Particles in Liquids
97(3)
Consistency Measures for Common Non-Newtonian Materials
100(10)
General
100(1)
Bingham Plastics
100(1)
Homogeneous Materials
100(2)
Pseudohomogeneous Materials
102(4)
Pseudoplastics
106(1)
Homogeneous Materials
106(3)
Pseudohomogeneous Materials
109(1)
Surface Tension and Interfacial Tension
110(4)
Relationship Between Surface Tension and Interfacial Tension
110(1)
Gas-Liquid
110(1)
Liquid-Liquid
110(1)
Surface Tension of Single-Component Liquids
111(1)
Estimation from Density
111(1)
Estimation from Refractive Index
111(1)
Estimation from Viscosity
112(1)
Estimation from Corresponding States
112(1)
Effect of Temperature
113(1)
Effect of Pressure
113(1)
Surface Tension of Multicomponent Liquids
114(1)
Bibliography
114(5)
Basic Concepts of the Flow of Newtonian Fluids
119(18)
Introduction
119(1)
The Equation of State
120(1)
The Constitutive Equation
121(1)
The Continuity Equation
121(1)
The Momentum Equation
122(3)
The Energy Equation
125(2)
The Mechanical Energy Equation
127(2)
Modes of Flow
129(1)
Laminar Flow
130(1)
Turbulent Flow
131(4)
Bibliography
135(2)
The Flow of Newtonian Fluids in Pipes
137(45)
Introduction
137(1)
Criteria for Laminar, Transitional, or Turbulent Flow
137(6)
Criteria for Laminar and Turbulent Flow Remote from the Entrance
138(3)
Distance from the Entrance Required for the Development of Stabilized Flow
141(2)
Steady-State Laminar Flow
143(8)
The Hagen-Poiseuille Relationships
143(1)
The Friction Factor Concept
144(1)
Entrance Effects
145(5)
General Form of the Pressure Drop Equation
150(1)
Steady-State Turbulent Flow
151(24)
Smooth Wall (SW) Turbulent Flow
152(1)
Empirical Friction Factor Relations
152(1)
Velocity Profile Relations
153(3)
Friction Factor Relations Based on Velocity Profile Analysis
156(4)
Wall Roughness and Its Effectiveness
160(2)
Fully Rough Wall (FRW) Turbulent Flow
162(2)
Partially Rough Wall (PRW) Turbulent Flow
164(2)
The Friction Factor Chart
166(3)
General Form of the Pressure Drop Equation
169(6)
Recommended Design Methods
175(3)
Introduction
175(1)
Entrance Effects
175(1)
Effect of Bends and Fittings
176(1)
Potential Energy of Hydrostatic Head Effects
176(1)
Acceleration or Kinetic Effects
177(1)
Pressure Gradient for the Steady Flow of Incompressible Fluids (Liquids; and Gases and Vapors when ΔP < 0.10P1)
177(1)
Steps in Estimating ΔP when D and Q (or V) are Known
177(1)
Steps in Estimating D when Q (or V) and ΔP (or ΔPf) are Known
177(1)
Steps in Estimating Q (or V) when D and ΔP are Known
178(1)
Pressure Gradient for the Steady Flow of Compressible Fluids (Gases and Vapors when ΔP > 0.10P1)
178(1)
Bibliography
178(4)
The Flow of Time-Independent Non-Newtonian Fluids in Pipes
182(85)
Introduction
182(1)
Steady-State Laminar Flow
183(29)
The Rabinowitsch-Mooney Relations
183(3)
The Relations for Pseudoplastic Fluids
186(1)
The Power Law Fluid
186(6)
The Ellis Fluid
192(1)
The Power-Eyring Fluid
193(1)
The Meter Fluid
194(1)
The Sisko Relations
195(1)
The Relations for a Bingham Fluid
196(5)
The Relations for a Yield-Pseudoplastic Fluid
201(1)
Viscoelastic Fluids
202(1)
The Metzner and Reed Generalized Approach
203(3)
Entrance Effects
206(5)
General Form of the Pressure Drop Equation
211(1)
Transition from Laminar to Turbulent Flow
212(5)
Steady-State Turbulent Flow
217(34)
Introduction
217(1)
The Relations for Pseudoplastic Fluids
217(1)
The Dodge and Metzner Relations
217(3)
The Tomita Relations
220(1)
The Clapp Relations
221(2)
The Torrance Relations
223(2)
The Lord, Husley, and Melton Scale-Up Procedure
225(2)
The Relations for a Bingham Fluid
227(2)
The Tomita Relations
229(1)
The Torrance Relations
229(1)
The Thomas Correlation
230(1)
The Hanks and Dadia Analysis
231(2)
The Relations for a Yield-Pseudoplastic Fluid; The Torrance Relations
233(4)
The Relations for Viscoelastic Fluids
237(1)
Introduction
237(4)
The Kilbane and Greenkorn Correlation
241(1)
Logarithmic Relationships (Meyer, and Seyer and Metzner)
242(4)
The Astarita et al. Relationships
246(2)
Bizarre Fluids
248(1)
Entrance Effects
249(2)
General Form of the Pressure Drop Equation
251(1)
The Flow of Suspensions of Fibrous Materials
251(6)
Introduction
251(2)
Prediction of Pressure Gradient
253(4)
Recommended Design Methods
257(5)
Introduction
257(1)
Entrance Effects
258(1)
Effect of Bends and Fittings
259(1)
Potential Energy or Hydrostatic Head Effects
260(1)
Acceleration or Kinetic Energy Effects
260(1)
Pressure Gradient for Steady Flow
260(2)
Bibliography
262(5)
The Flow of Time-Dependent Non-Newtonian Fluids in Pipes
267(23)
Introduction
267(1)
Laminar Flow
268(16)
Qualitative Description
268(4)
General Equations
272(2)
Integration of the General Equation
274(1)
The Method of Govier and Ritter
274(2)
The Method of Ritter and Batycky
276(5)
Entrance Effects
281(2)
General Form of the Pressure Drop Equation
283(1)
Transition from Laminar to Turbulent Flow
284(1)
Turbulent Flow
285(2)
Introduction
285(1)
Approximate Treatment
285(1)
Entrance Effects
286(1)
General Form of the Pressure Drop Equation
286(1)
Recommended Design Methods
287(2)
Introduction
287(1)
Entrance Effects
287(1)
Effect of Bends and Fittings
288(1)
Potential Energy or Hydrostatic Head Effects
288(1)
Acceleration Effects
288(1)
Pressure Gradient for Steady Flow Beyond the Stabilization Distance, Lc
288(1)
Bibliography
289(1)
Fundamental Concepts of the Flow of Multiphase Mixtures
290(32)
Introduction
290(2)
Description of a General Two-Phase System
292(1)
The Continuity Equation
293(5)
Total System Continuity Equation
293(4)
Individual Component Continuity Equations
297(1)
The Momentum Equation
298(2)
The Total Energy Equation
300(1)
The Mechanical Energy Equation
301(7)
Derivation from the Momentum Equation
302(2)
Derivation from the Total Energy Equation
304(1)
The Irreversibility Term, dPf
305(3)
The Slip or Holdup Effect
308(12)
Average Slip Velocity
308(1)
Ratio of the Average in situ Velocities (Holdup Ratio or Slip Ratio)
309(2)
Bankoff K Factor, Armand C Factor
311(1)
Factors Influencing Holdup
312(1)
Effect of Velocity and Concentration Profile
313(1)
Effect of Local Relative Velocity Between Phases
314(6)
Variation of Holdup with Length
320(1)
Bibliography
320(2)
The Vertical Flow of Gas-Liquid and Liquid-Liquid Mixtures in Pipes
322(131)
Introduction
322(1)
Typical Flow Patterns, Holdup and Pressure Gradient
323(12)
Flow Patterns
323(6)
Holdup
329(2)
Pressure Gradient
331(4)
Empirical Overall Correlations
335(27)
Flow Patterns
335(3)
Holdup
338(2)
Pressure Gradient
340(1)
Analyses of Correlations Not Involving Estimates of the in situ Concentration or Density
340(11)
Analyses or Correlations Involving Estimates of the in situ Concentration or Density
351(10)
The Prediction Scheme of Orkiszewski
361(1)
The Bubble Flow Pattern
362(27)
Introduction
362(1)
Bubble Generation at Submerged Orifices
363(2)
The Rise Velocity of Single Bubbles in a Stagnant Liquid
365(4)
The Effect of the Tube Wall
369(3)
Effect of Radial and Axial Interaction Between Bubbles
372(1)
Radial Interaction
372(2)
Axial Interaction - Approach to Stabilization
374(1)
Rise Velocity of a Continuous Swarm of Bubbles in a Stagnant Liquid
375(2)
Cross-Sectional Distribution of Bubbles in a Flowing Stream
377(1)
Cross Sectional Distribution of Bubble Velocity in a Flowing Stream
378(1)
The Average Absolute Rise Velocity of Bubbles in a Flowing Stream
379(5)
The Overall Mechanics of the Bubble Flow Pattern
384(1)
Flow Pattern Details
385(1)
Holdup
386(1)
Pressure Gradient
387(1)
The Transition from Bubble to Slug Flow
388(1)
The Slug Flow Pattern
389(25)
Introduction
389(2)
Overall Continuity Considerations
391(4)
The Flow of a Taylor Bubble in Stagnant Liquids
395(5)
The Flow of a Taylor Bubble in Flowing Liquids
400(1)
Small Bubbles in the Liquid Slug
401(1)
Relationship Between Bubble Length and Slug Length (Bubble Separation Distance)
402(1)
Axial Interaction Between Bubbles
403(1)
The Flow of the Film Surrounding the Taylor Bubble
404(4)
Flow Pattern Details
408(1)
Holdup
409(1)
Pressure Gradient
410(1)
Transition from Slug to Froth Flow
411(3)
The Froth Flow Pattern
414(2)
The Annular-Mist Flow Pattern
416(28)
Introduction
416(1)
Overall Continuity Considerations
417(1)
Pure Annular Flow - No Entrainment
417(1)
Annular-Mist Flow
418(1)
Momentum Considerations
419(1)
Pure Annular Flow - No Entrainment
419(11)
Annular-Mist Flow - The Effect of Entrainment
430(10)
Flow Pattern Details
440(1)
Pure Annular Flow - No Entrainment
441(1)
Annular-Mist Flow
441(1)
Holdup
442(1)
Pressure Gradient
442(2)
Recommended Design Methods
444(3)
Introduction
444(1)
Entrance Effects
445(1)
Effect of Bends and Fittings
445(1)
Potential Energy or Hydrostatic Head Effects
445(1)
Acceleration or Kinetic Energy Effects
445(1)
Flow Pattern, Holdup and Pressure Gradient for the Steady Flow of Incompressible Mixtures (Liquid-Gas Mixtures when ΔP < 0.10P1)
446(1)
Prediction by General Methods
446(1)
Confirmation by Specific Flow Pattern Methods
446(1)
Bibliography
447(6)
The Vertical Flow of Gas-Solid and Liquid-Solid Mixtures in Pipes
453(50)
Introduction
453(2)
Typical Data
455(13)
Flow Pattern
456(5)
Holdup
461(2)
Pressure Gradient
463(5)
General Correlations
468(29)
Flow Pattern
468(1)
Holdup
469(6)
Pressure Gradient
475(1)
Introduction
475(2)
Analyses or Correlations Not Involving Estimates of the in situ Concentration or Density
477(4)
Analyses or Correlations Involving Estimates of the in situ Concentration or Density
481(12)
Mechanistic Approach
493(4)
Recommended Design Methods
497(3)
Introduction
497(1)
Entrance Effects
498(1)
Effect of Bends and Fittings
498(1)
Potential Energy or Hydrostatic Head Effects
498(1)
Acceleration or Kinetic Energy Effects
499(1)
Flow Pattern, Holdup, and Pressure Gradient for the Steady Flow of Incompressible Mixtures (Liquid-Solid Mixtures And Gas-Solid Mixtures when ΔP < 0.10P1)
499(1)
Bibliography
500(3)
The Horizontal Flow of Gas-Liquid and Liquid-Liquid Mixtures in Pipes
503(114)
Introduction
503(1)
Typical Flow Patterns, Holdup, and Pressure Gradient
504(12)
Flow Pattern
504(8)
Holdup
512(2)
Pressure Gradient
514(2)
Empirical Overall Correlations
516(38)
Flow Pattern
516(11)
Holdup
527(5)
Pressure Gradient
532(1)
The Lockhart and Martinelli and Related Correlations
532(9)
The Bertuzzi, Tek, and Poettmann Correlation
541(1)
The Baxendell Correlation
542(2)
The Hoogendoorn and Related Correlations
544(2)
The Dukler, Wicks, and Cleveland Correlation
546(2)
The Chawla Correlation
548(1)
Other Correlations
548(2)
Effect of Pipe Inclination
550(4)
The Bubble Flow Patterns
554(7)
Introduction
554(2)
Overall Continuity Considerations
556(1)
Approximate Treatment
557(1)
Relative Velocity of the Bubbles
557(1)
Holdup
558(1)
Pressure Gradient
559(1)
Treatment of Brown and Kranich for Dispersed Bubbles
560(1)
Other Correlations
561(1)
Transition to Stratified or Slug Flow Pattern
561(1)
The Stratified Flow Pattern
561(15)
Introduction
561(1)
Overall Continuity Considerations
562(4)
Momentum Considerations
566(1)
The Laminar-Laminar Case
566(4)
The Laminar-Turbulent or Turbulent-Turbulent Case
570(5)
Flow Pattern, Holdup, and Pressure Gradient
575(1)
Transition to the Annular-Mist and to the Wave Flow Patterns
576(1)
The Wave Flow Pattern
576(1)
The Slug Flow Pattern
577(12)
Introduction
577(1)
Overall Continuity Considerations
578(2)
Overall Momentum Considerations
580(1)
The Kordyban Model
580(1)
The Hubbard and Dukler Model
581(5)
Other Correlations
586(2)
Flow Pattern, Holdup, and Pressure Gradient
588(1)
Transition to Annular-Mist Flow
589(1)
The Annular-Mist Flow Pattern
589(21)
Introduction
589(2)
Overall Continuity Considerations
591(1)
Pure Annular Flow - No Entrainment
591(1)
Annular-Mist Flow
591(1)
Momentum Considerations
592(1)
Concentric Film Flow - No Entrainment
592(8)
Circumferential Variation of Film Thickness
600(3)
Film Waves
603(4)
Effect of Entrainment
607(2)
Other Correlations
609(1)
Flow Pattern Details
609(1)
Holdup
609(1)
Pressure Gradient
610(1)
Recommended Design Methods
610(3)
Introduction
610(1)
Entrance Effects
610(1)
Effect of Bends and Fittings
610(1)
Potential Energy or Hydrostatic Head Effects
611(1)
Acceleration or Kinetic Energy Effects
611(1)
Flow Pattern, Holdup, and Pressure Gradient for the Steady Flow of Incompressible Mixtures (Liquid-Solid Mixtures and Gas-Solid Mixtures when ΔP < 0.10P1)
611(1)
Prediction by General Methods
611(1)
Confirmation by Specific Flow Pattern Methods
612(1)
Bibliography
613(4)
The Horizontal Flow of Gas-Solid and Liquid-Solid Mixtures in Pipes
617(95)
Introduction
617(2)
Typical Flow Patterns, Holdup, and Pressure Gradient
619(22)
Introduction
619(2)
Flow Patterns
621(11)
Holdup
632(3)
Pressure Gradient
635(6)
General Correlations
641(63)
Introduction
641(1)
Flow Patterns
642(1)
Introduction
642(1)
Transition Velocities
643(19)
Velocity and Concentration Profiles
662(3)
Holdup
665(2)
Pressure Gradient
667(1)
Introduction
667(1)
All Flow Patterns
668(12)
Symmetric Concentration Flow Pattern
680(5)
Asymmetric Concentration Flow Pattern
685(5)
Moving and Stationary Bed Flow Patterns
690(14)
Recommended Design Methods
704(4)
Introduction
704(1)
Entrance Effects
704(1)
Effect of Bends and Fittings
705(1)
Potential Energy or Hydrostatic Head Effects
705(1)
Kinetic Energy or Acceleration Effects
706(1)
Flow Pattern, Holdup, and Pressure Gradient for the Steady Flow of Incompressible Mixtures (Liquid-Solid Mixtures; Gas-Solid Mixtures when ΔP < 0.10P1)
706(1)
Predictions by General Methods
706(1)
Confirmation by Specific Flow Pattern Methods
707(1)
Bibliography
708(4)
The Flow of Capsules in Pipes
712(46)
Introduction
712(2)
Typical Flow Patterns, Holdup, and Pressure Gradient
714(11)
Flow Patterns
714(2)
Holdup
716(1)
Overall Continuity Considerations
716(3)
Typical Holdup Data
719(4)
Pressure Gradient
723(2)
General Analyses and Correlations
725(27)
Spherical Capsules
725(1)
Concentric Cylindrical Capsules
726(1)
Velocity and Holdup Analysis-Laminar Flow
726(2)
Velocity and Holdup Analysis-Turbulent Flow
728(2)
Pressure Gradient Analysis-Laminar and Turbulent Flow
730(3)
Nonconcentric Cylindrical Capsules
733(1)
Laminar Flow-Analysis in Terms of Clearance
733(8)
Laminar and Turbulent Flow-Approximate Force Balance Analyses
741(11)
Recommended Design Methods (Preliminary Only)
752(3)
Introduction
752(1)
Entrance Effects
753(1)
Effect of Bends and Fittings
753(1)
Potential Energy or Hydrostatic Head Effects
753(1)
Acceleration or Kinetic Energy Effects
753(1)
Pressure Gradient and Holdup for the Steady Flow of Capsules
754(1)
Bibliography
755(3)
Appendix
758(21)
Constants and Physical Properties of Common Pure Substances
758(2)
Values of Z(0) for Compressibility Factor Calculation
760(2)
Values of Z(0) in the Critical Region and Near the Two-Phase Region
762(1)
Values of Z(1) for Compressibility Factor Calculation
763(2)
Values of Z(1) in the Critical Region and Near the Two-Phase Region
765(1)
Constants for the Alani and Kennedy Equation
766(1)
Reduced Liquid Volumes for the Lyckman et al. Equation
767(1)
Values of the Constant n in the Goldhammer Equation (Eq. 2.26)
768(1)
Typical Liquid Compressibilities
769(1)
Gas-Viscosity Temperature Function for the Bromley and Wilke Equation
770(1)
Liquid Molal Volume at the Normal Boiling Point
771(1)
Structural Contributions to Calculate the Constant B in Eq. 2.54
772(1)
Group Contributions to the Parachor [ P]
773(1)
Group Contributions to the Molar Refraction [ RD]
774(1)
Constant for the Eykman Equation
775(1)
Constants for the Pelofsky Equation
776(1)
Values of the Constant a in the Meissner and Michaels Equation
777(2)
Index 779