Foreword |
|
iii | |
Preface |
|
iv | |
Dedication |
|
vi | |
Acknowledgments |
|
vii | |
The Authors |
|
viii | |
|
Generalities and Basics of Fluidization |
|
|
1 | (126) |
|
|
1 | (6) |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
2 | (1) |
|
|
3 | (1) |
|
Situation at the Onset of Fluidization |
|
|
4 | (1) |
|
|
4 | (2) |
|
Advantages of Fluidized Bed |
|
|
6 | (1) |
|
Disadvantages of Fluidized Bed |
|
|
6 | (1) |
|
Properties of Particles and the Granular Bed |
|
|
7 | (7) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
7 | (2) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
Important Properties of Particulate Solids |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
Grouping of Gas Fluidization |
|
|
14 | (9) |
|
Hydrodynamics-Based Groups |
|
|
14 | (1) |
|
|
14 | (3) |
|
|
17 | (1) |
|
|
18 | (1) |
|
Dimensionless Geldart Groups |
|
|
19 | (1) |
|
Hydrodynamics- and Thermal-Properties-Based Groups |
|
|
20 | (1) |
|
Variables Affecting Fluidization |
|
|
21 | (1) |
|
Varieties of Fluidization |
|
|
22 | (1) |
|
Hydrodynamics of Two-Phase Fludization |
|
|
23 | (23) |
|
Minimum Fluidization Velocity |
|
|
23 | (1) |
|
Experimental Determination |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
25 | (1) |
|
Dimensional Analysis (Direct Correlation) |
|
|
25 | (1) |
|
|
25 | (4) |
|
|
29 | (3) |
|
|
32 | (2) |
|
|
34 | (1) |
|
|
34 | (1) |
|
Mathematical Representation |
|
|
34 | (1) |
|
|
35 | (1) |
|
Evaluation of Drag Coefficient |
|
|
36 | (1) |
|
Correlations for Drag Coefficient |
|
|
36 | (1) |
|
Terminal Velocity for Single Spherical Particle |
|
|
37 | (1) |
|
Difficulties in Predicting Particle Terminal Velocity |
|
|
38 | (2) |
|
Some Advances in Predicting Particle Terminal Velocity |
|
|
40 | (3) |
|
Experimental Methods for Determining Particle Terminal Velocity |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
44 | (2) |
|
|
46 | (5) |
|
Particulate and Aggregative Fluidization |
|
|
46 | (2) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (9) |
|
|
51 | (1) |
|
|
52 | (1) |
|
Cocurrent Upflow of Gas-Liquid |
|
|
52 | (1) |
|
|
53 | (2) |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
55 | (2) |
|
Holdup Determination by Experiments |
|
|
57 | (1) |
|
Turbulent Contact Absorber |
|
|
58 | (2) |
|
|
60 | (17) |
|
|
60 | (1) |
|
|
61 | (1) |
|
Fluid-Particle Heat Transfer |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
63 | (1) |
|
Predictions of Heat Transfer Coefficient |
|
|
63 | (1) |
|
|
64 | (1) |
|
Particle-Convective Component |
|
|
64 | (2) |
|
|
66 | (1) |
|
|
67 | (1) |
|
Overall Heat Transfer Coefficient |
|
|
67 | (1) |
|
Heat Transfer to Immersed Surfaces |
|
|
68 | (1) |
|
|
68 | (1) |
|
|
69 | (1) |
|
Effects of Operating Variables |
|
|
69 | (1) |
|
|
69 | (1) |
|
Heat Transfer Coefficient versus Velocity |
|
|
69 | (1) |
|
|
70 | (2) |
|
|
72 | (2) |
|
|
74 | (1) |
|
Heat Transfer in Liquid Fluidized Beds |
|
|
75 | (1) |
|
Differences with Gas-Solid Systems |
|
|
75 | (1) |
|
|
75 | (1) |
|
Heat Transfer in Three-Phase Fluidized Bed |
|
|
76 | (1) |
|
Heat Transfer Coefficient |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
77 | (17) |
|
|
77 | (1) |
|
|
78 | (1) |
|
Mass Transfer Between Fluidized Bed and Object or Wall |
|
|
78 | (1) |
|
|
78 | (1) |
|
|
79 | (1) |
|
|
79 | (1) |
|
Mass Transfer Between Particle and Fluid |
|
|
79 | (1) |
|
Comparison of Mass Transfer from Single Particle and Fixed Bed to Fluid |
|
|
79 | (1) |
|
Complexity in Measurement |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
83 | (1) |
|
Mass Transfer Between Segregated Phases |
|
|
83 | (1) |
|
|
83 | (1) |
|
Gas Exchange Between Lean and Dense Phases (Two-Phase Model) |
|
|
84 | (1) |
|
Measurement of Gas-Exchange Rate |
|
|
85 | (1) |
|
|
86 | (1) |
|
Mass Transfer Derived from Bubbling Bed Model |
|
|
86 | (2) |
|
Mass Transfer in Three-Phase Fluidized Beds |
|
|
88 | (1) |
|
|
88 | (1) |
|
Volumetric Mass Transfer Coefficient |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
90 | (1) |
|
Effect of Properties of Gas and Liquid |
|
|
91 | (1) |
|
Effect of Distributor Plate |
|
|
92 | (1) |
|
Effect of Bubble Population |
|
|
92 | (1) |
|
Liquid-Solid Mass Transfer |
|
|
93 | (1) |
|
|
94 | (33) |
|
|
94 | (1) |
|
|
94 | (1) |
|
|
94 | (1) |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
98 | (1) |
|
|
98 | (1) |
|
|
98 | (1) |
|
|
98 | (1) |
|
Prediction by Bubble Dynamics Method |
|
|
98 | (2) |
|
Prediction by Mass Balance Method |
|
|
100 | (2) |
|
Kunii and Levenspiel Method |
|
|
102 | (1) |
|
Complexity of Parameter Determination |
|
|
102 | (1) |
|
Transport Disengaging Height |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
104 | (7) |
|
|
111 | (16) |
|
Applications in Mineral, Metal, and Materials Extraction and Processing |
|
|
127 | (82) |
|
|
127 | (21) |
|
Types of Fluid Bed Dryers |
|
|
127 | (1) |
|
|
127 | (1) |
|
|
128 | (3) |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
132 | (2) |
|
Characteristics of Dryers |
|
|
134 | (1) |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
136 | (1) |
|
Mass (Moisture) Transport |
|
|
136 | (1) |
|
Moisture at the Surface of the Particle |
|
|
137 | (1) |
|
Mass Balance Across a Gas Bubble |
|
|
138 | (1) |
|
Overall Mass Balance of a Fluid Bed Dryer |
|
|
138 | (1) |
|
|
138 | (1) |
|
|
139 | (1) |
|
Vibro Fluidized Bed Dryer |
|
|
139 | (1) |
|
|
140 | (1) |
|
Vibro Inclined Fluidized Bed |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
142 | (2) |
|
Internally Heated Dryer versus Inert Solid Bed Dryer |
|
|
144 | (1) |
|
|
144 | (1) |
|
|
144 | (1) |
|
|
145 | (1) |
|
|
145 | (1) |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
146 | (1) |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
148 | (17) |
|
Fluidization in Pyrometallurgy |
|
|
148 | (1) |
|
Industrial Noncatalytic Reactors |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
149 | (1) |
|
|
149 | (3) |
|
|
152 | (1) |
|
|
152 | (1) |
|
|
153 | (1) |
|
Turbulent Fluid Bed Roaster |
|
|
154 | (1) |
|
|
154 | (2) |
|
|
156 | (1) |
|
|
156 | (2) |
|
|
158 | (1) |
|
Iron, Nickel, and Copper Concentrates |
|
|
158 | (1) |
|
|
158 | (1) |
|
|
159 | (1) |
|
|
159 | (1) |
|
|
159 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
162 | (1) |
|
Fluid Bed Roasters for Miscellaneous Metal Sulfides |
|
|
163 | (1) |
|
Chalcocite, Copper, and Arsenic Concentrates |
|
|
163 | (1) |
|
|
163 | (1) |
|
|
164 | (1) |
|
Troubleshooting in Fluid Bed Roasters |
|
|
164 | (1) |
|
|
164 | (1) |
|
|
165 | (1) |
|
|
165 | (1) |
|
|
165 | (6) |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
166 | (1) |
|
Cement, Bauxite, and Phosphate Rock |
|
|
167 | (1) |
|
|
167 | (1) |
|
Circulating Fluidized Bed |
|
|
167 | (1) |
|
|
168 | (1) |
|
|
168 | (1) |
|
|
168 | (1) |
|
|
168 | (2) |
|
|
170 | (1) |
|
|
170 | (1) |
|
Some Useful Hints on Fluid Bed Calcination |
|
|
170 | (1) |
|
|
171 | (11) |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
172 | (1) |
|
Fluidized Iron Ore Reduction |
|
|
173 | (1) |
|
|
173 | (1) |
|
Other Reduction Processes |
|
|
173 | (2) |
|
Reaction Aspects in Direct Reduction |
|
|
175 | (1) |
|
|
175 | (1) |
|
|
175 | (1) |
|
Troubleshooting in Fluosolid Reduction |
|
|
176 | (1) |
|
|
176 | (1) |
|
|
176 | (1) |
|
|
177 | (1) |
|
|
177 | (1) |
|
|
177 | (1) |
|
|
178 | (1) |
|
|
178 | (1) |
|
|
178 | (1) |
|
Fluidization in Modern Iron Making |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
180 | (1) |
|
Direct Reduction in Nonferrous Industries |
|
|
180 | (1) |
|
|
180 | (1) |
|
|
180 | (1) |
|
Copper and Nickel Powders |
|
|
180 | (1) |
|
Nickel and Titanium Powders |
|
|
181 | (1) |
|
|
181 | (1) |
|
|
182 | (1) |
|
|
182 | (27) |
|
Fluidization in Halide Metallurgy |
|
|
182 | (1) |
|
|
182 | (1) |
|
Chlorination and Fluidization |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
184 | (2) |
|
|
186 | (1) |
|
|
186 | (1) |
|
|
186 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
Chlorination for Beneficiation |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
188 | (1) |
|
|
189 | (1) |
|
Some Highlights of Beneficiation |
|
|
189 | (1) |
|
Chlorination of Zirconium-Bearing Materials |
|
|
190 | (1) |
|
Chlorination in Zirconium Metallurgy |
|
|
190 | (1) |
|
|
190 | (1) |
|
Chlorination of Nuclear-Grade Zirconium Dioxide |
|
|
191 | (1) |
|
|
191 | (1) |
|
Direct Chlorination of Zircon |
|
|
191 | (2) |
|
Columbite Ore and Molysulfide Chlorination |
|
|
193 | (1) |
|
|
193 | (1) |
|
|
193 | (1) |
|
Chlorination in Silicon Metal Production |
|
|
194 | (1) |
|
|
194 | (1) |
|
Fluidization in Silicon Metal Production |
|
|
194 | (2) |
|
Chlorination/Fluorination of Aluminum-Bearing Materials |
|
|
196 | (1) |
|
|
196 | (1) |
|
|
197 | (1) |
|
Selective Chlorination for Nickel and Cobalt Recovery |
|
|
197 | (1) |
|
|
197 | (1) |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
199 | (10) |
|
Fluidization in Nuclear Engineering |
|
|
209 | (62) |
|
|
209 | (23) |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
210 | (1) |
|
Design Aspects of Leaching Column |
|
|
210 | (3) |
|
|
213 | (1) |
|
|
213 | (1) |
|
|
213 | (1) |
|
|
213 | (2) |
|
|
215 | (1) |
|
Fluidization in Nuclear Fuel Cycle |
|
|
215 | (1) |
|
|
215 | (1) |
|
Thermal Decomposition of Uranyl Nitrate |
|
|
215 | (2) |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
218 | (1) |
|
|
218 | (1) |
|
Reduction of Oxides of Uranium |
|
|
219 | (1) |
|
|
219 | (2) |
|
|
221 | (1) |
|
|
221 | (1) |
|
|
222 | (1) |
|
|
222 | (1) |
|
|
222 | (2) |
|
Hydrofluorination of Uranium Dioxide |
|
|
224 | (1) |
|
|
224 | (1) |
|
Fluid Bed Hydrofluorination |
|
|
225 | (1) |
|
Manufacture of Uranium Hexafluoride |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
227 | (1) |
|
Uranium Tetrafluoride Fluorination |
|
|
227 | (1) |
|
|
228 | (1) |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
232 | (1) |
|
Fuel Material Preparation |
|
|
232 | (13) |
|
Pyrohydrolysis of Uranium Hexafluoride |
|
|
232 | (1) |
|
|
232 | (2) |
|
|
234 | (1) |
|
|
234 | (1) |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
235 | (1) |
|
Stoichiometric Uranium Monocarbide |
|
|
236 | (1) |
|
Uranium Carbide as Nuclear Fuel |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
239 | (1) |
|
Carbides and Nitrides Directly from Uranium Dioxide |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
240 | (1) |
|
|
240 | (1) |
|
|
241 | (1) |
|
|
241 | (1) |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
243 | (1) |
|
|
243 | (1) |
|
|
243 | (1) |
|
|
243 | (2) |
|
|
245 | (6) |
|
|
245 | (1) |
|
|
245 | (2) |
|
|
247 | (1) |
|
|
247 | (1) |
|
Classification of Pyrolytic Deposition |
|
|
247 | (1) |
|
|
247 | (1) |
|
|
248 | (1) |
|
|
249 | (1) |
|
|
249 | (1) |
|
|
249 | (1) |
|
|
250 | (1) |
|
|
251 | (1) |
|
Fluidization in Zirconium Extraction |
|
|
251 | (2) |
|
|
251 | (1) |
|
|
251 | (1) |
|
|
252 | (1) |
|
|
252 | (1) |
|
Fluid Beds in Nuclear Fuel Reprocessing |
|
|
253 | (5) |
|
|
253 | (1) |
|
|
253 | (1) |
|
|
253 | (1) |
|
|
254 | (1) |
|
|
255 | (1) |
|
Fluoride Volatility Process |
|
|
255 | (1) |
|
|
255 | (1) |
|
|
256 | (1) |
|
Novel Fluid Bed Fuel Reprocessing |
|
|
257 | (1) |
|
Uranium-Aluminum/Uranium-Zirconium Fuel |
|
|
257 | (1) |
|
|
257 | (1) |
|
|
257 | (1) |
|
Fluidization in Waste Processing and Pollution Abatement |
|
|
258 | (13) |
|
|
258 | (1) |
|
|
258 | (1) |
|
|
259 | (1) |
|
|
259 | (1) |
|
|
259 | (1) |
|
|
260 | (1) |
|
|
260 | (1) |
|
|
260 | (1) |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
262 | (1) |
|
|
262 | (2) |
|
|
264 | (7) |
|
High-Temperature Fluidized Bed Reactor |
|
|
271 | (78) |
|
Plasma, Plasma Furnaces, and Plasma Fluidized Bed |
|
|
271 | (8) |
|
|
271 | (1) |
|
|
271 | (1) |
|
|
271 | (1) |
|
|
272 | (1) |
|
|
272 | (1) |
|
|
273 | (2) |
|
|
275 | (1) |
|
|
275 | (1) |
|
Gases for Plasma Generation |
|
|
275 | (1) |
|
|
275 | (2) |
|
|
277 | (1) |
|
|
278 | (1) |
|
|
278 | (1) |
|
|
279 | (1) |
|
|
279 | (4) |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
280 | (1) |
|
|
281 | (1) |
|
|
281 | (1) |
|
|
282 | (1) |
|
|
283 | (18) |
|
Plasma-Solid Interactions |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
284 | (1) |
|
|
284 | (1) |
|
|
285 | (2) |
|
Inductively Coupled Plasma Fluid Bed |
|
|
287 | (1) |
|
Plasma Fluidized Bed Characteristics |
|
|
288 | (1) |
|
Interparticle Forces and Minimum Fluidization Velocity |
|
|
288 | (1) |
|
Plasma Interaction with Fluid Bed |
|
|
289 | (1) |
|
|
289 | (1) |
|
|
290 | (1) |
|
|
291 | (1) |
|
|
291 | (1) |
|
|
292 | (1) |
|
Mechanism of Plasma Jet Quenching |
|
|
293 | (1) |
|
|
293 | (1) |
|
|
294 | (1) |
|
|
294 | (1) |
|
|
294 | (1) |
|
Methane Decomposition Studies (DC Plasma) |
|
|
294 | (2) |
|
Methane Pyrolysis Studies (Inductive Plasma) |
|
|
296 | (1) |
|
|
296 | (2) |
|
Radially Coalesced Plasma |
|
|
298 | (1) |
|
Feeding Methods of Particulate Solids in Plasma |
|
|
299 | (1) |
|
|
299 | (1) |
|
|
299 | (2) |
|
Application of Plasma Fluidized Bed in Materials Processing |
|
|
301 | (9) |
|
Scope of Plasma Application in Extractive Metallurgy |
|
|
301 | (1) |
|
Plasma Fluid Bed Processes |
|
|
302 | (1) |
|
|
302 | (1) |
|
|
302 | (1) |
|
|
303 | (1) |
|
Advanced Materials Processing |
|
|
303 | (1) |
|
|
303 | (2) |
|
|
305 | (1) |
|
|
306 | (1) |
|
Salt Roasting in Spout Fluid Bed |
|
|
307 | (1) |
|
|
307 | (1) |
|
|
308 | (1) |
|
Miscellaneous Applications |
|
|
308 | (1) |
|
|
308 | (1) |
|
|
309 | (1) |
|
|
309 | (1) |
|
Electrothermal Fludized Bed |
|
|
310 | (39) |
|
|
310 | (1) |
|
|
310 | (1) |
|
|
310 | (1) |
|
|
311 | (1) |
|
|
312 | (1) |
|
|
312 | (1) |
|
|
313 | (1) |
|
Characteristics of Electrothermal Fluidized Beds |
|
|
314 | (1) |
|
|
314 | (1) |
|
|
314 | (1) |
|
|
314 | (1) |
|
Mechanism of Electrocity Transfer |
|
|
314 | (1) |
|
|
315 | (1) |
|
|
316 | (1) |
|
|
316 | (1) |
|
|
317 | (1) |
|
|
318 | (1) |
|
|
319 | (1) |
|
Resistivity and Bed Status |
|
|
320 | (1) |
|
|
321 | (1) |
|
Effect of Current Density |
|
|
321 | (2) |
|
Effect of Bed Height and Diameter |
|
|
323 | (1) |
|
|
323 | (3) |
|
|
326 | (2) |
|
|
328 | (1) |
|
|
329 | (1) |
|
Effect of Nonconducting Solids |
|
|
329 | (3) |
|
|
332 | (1) |
|
|
332 | (1) |
|
|
332 | (1) |
|
|
332 | (1) |
|
Power Loading and Control |
|
|
333 | (1) |
|
Electrically Stabilized versus Electrothermal Fluidized Bed |
|
|
333 | (2) |
|
|
335 | (1) |
|
|
335 | (1) |
|
|
336 | (1) |
|
|
336 | (1) |
|
Zirconium Dioxide Chlorination |
|
|
336 | (1) |
|
|
337 | (1) |
|
Miscellaneous Applications |
|
|
338 | (1) |
|
|
338 | (2) |
|
|
340 | (9) |
|
|
349 | (84) |
|
|
349 | (11) |
|
|
349 | (1) |
|
Hydrodynamics Operating Velocity |
|
|
349 | (1) |
|
|
349 | (1) |
|
|
350 | (1) |
|
|
350 | (1) |
|
|
350 | (1) |
|
Grid/Distributor Pressure Drop Criterion |
|
|
350 | (2) |
|
Critical Grid Resistance Ratio |
|
|
352 | (1) |
|
Backmixing Critical Velocity |
|
|
353 | (1) |
|
Operating Velocity Under Condition of Particle Attrition or Agglomeration |
|
|
353 | (1) |
|
Operating Velocity for Minimizing Solid Leakage Through Distributor |
|
|
354 | (1) |
|
Solid Leakage or Weeping Through Grids |
|
|
354 | (1) |
|
Operating Velocity at a Desired Solid Weeping Rate |
|
|
354 | (1) |
|
Operating Velocity Based on Maximum Bubble Size |
|
|
355 | (2) |
|
Operating Velocity for Optimum Heat Transfer |
|
|
357 | (1) |
|
|
357 | (1) |
|
|
357 | (1) |
|
Operating Velocity Dependent on Chemical Reaction |
|
|
358 | (1) |
|
Stoichiometric Considerations |
|
|
358 | (1) |
|
|
359 | (1) |
|
|
360 | (2) |
|
|
360 | (1) |
|
|
360 | (1) |
|
|
361 | (1) |
|
Key Influencing Parameters |
|
|
361 | (1) |
|
|
362 | (1) |
|
|
362 | (15) |
|
|
362 | (1) |
|
|
363 | (1) |
|
Importance of Distributor |
|
|
363 | (1) |
|
|
363 | (1) |
|
|
364 | (1) |
|
Influence on Bed Behavior |
|
|
365 | (1) |
|
|
365 | (1) |
|
|
365 | (1) |
|
|
366 | (1) |
|
Conventional Distributors for Gas or Liquid |
|
|
366 | (1) |
|
Improved Gas-Liquid Distributors |
|
|
367 | (1) |
|
Common Distributors for Gas and Liquid |
|
|
368 | (1) |
|
Advanced Gas-Liquid Distributors |
|
|
369 | (1) |
|
Pressure-Drop-Dependent Distributors |
|
|
370 | (1) |
|
|
370 | (1) |
|
Low-Pressure-Drop Distributor |
|
|
370 | (1) |
|
High-Pressure-Drop Distributor |
|
|
371 | (1) |
|
|
371 | (1) |
|
|
371 | (1) |
|
|
371 | (1) |
|
|
372 | (1) |
|
|
372 | (1) |
|
Operation of Gas-Issuing Ports |
|
|
372 | (1) |
|
Significance of Pressure Drop |
|
|
373 | (1) |
|
Prediction of Pressure Drop Ratio |
|
|
373 | (1) |
|
Minimum Operating Velocity Criteria |
|
|
374 | (1) |
|
|
374 | (1) |
|
|
375 | (1) |
|
|
376 | (1) |
|
|
377 | (9) |
|
Reaction Kinetics with Hydrodynamics-Satisfied Design |
|
|
377 | (1) |
|
|
377 | (1) |
|
|
378 | (1) |
|
|
378 | (1) |
|
Ratio of Pitch to Orifice Diameter |
|
|
378 | (2) |
|
Guidelines for Fixing Ratio of Pitch to Orifice Diameter |
|
|
380 | (1) |
|
Multiple Choices for Operation and Selection of Ratio of Pitch to Orifice Diameter |
|
|
381 | (1) |
|
Distributor for Three-Phase Fluidization |
|
|
382 | (2) |
|
|
384 | (1) |
|
|
385 | (1) |
|
|
386 | (47) |
|
|
386 | (1) |
|
|
387 | (1) |
|
|
387 | (1) |
|
|
388 | (1) |
|
Some Basic Aspects of Modeling |
|
|
389 | (1) |
|
|
390 | (3) |
|
|
393 | (1) |
|
|
394 | (4) |
|
|
398 | (1) |
|
Davidson and Harrison Model |
|
|
398 | (4) |
|
Kunii and Levenspiel Model |
|
|
402 | (1) |
|
|
403 | (2) |
|
|
405 | (2) |
|
|
407 | (2) |
|
|
409 | (2) |
|
|
411 | (2) |
|
|
413 | (1) |
|
|
414 | (1) |
|
|
414 | (2) |
|
|
416 | (1) |
|
Industrial-Scale Reactors |
|
|
417 | (1) |
|
Fluidized Bed Reactor Efficiency |
|
|
417 | (2) |
|
|
419 | (4) |
|
|
423 | (10) |
|
Some Advanced Application Areas of Fluidization |
|
|
433 | (54) |
|
|
433 | (16) |
|
Magnetically Stabilized Fluidized Beds |
|
|
433 | (1) |
|
|
433 | (1) |
|
|
434 | (1) |
|
|
435 | (1) |
|
|
436 | (1) |
|
|
436 | (2) |
|
Minimum Semifluidization Velocity |
|
|
438 | (1) |
|
Maximum Semifluidization Velocity |
|
|
438 | (1) |
|
Pressure Drop and Voidage |
|
|
439 | (1) |
|
Limiting Factors and Applications |
|
|
439 | (1) |
|
|
440 | (1) |
|
|
440 | (1) |
|
|
441 | (1) |
|
Minimum Spout Fluidizing Velocity |
|
|
442 | (1) |
|
|
443 | (1) |
|
|
443 | (1) |
|
Centrifugal Fluidized Bed |
|
|
444 | (1) |
|
|
444 | (1) |
|
|
444 | (2) |
|
|
446 | (1) |
|
Compartmented Fluidized Bed |
|
|
446 | (1) |
|
|
446 | (1) |
|
|
447 | (1) |
|
|
448 | (1) |
|
|
448 | (1) |
|
Fluidized Electrode Cells |
|
|
449 | (19) |
|
Basics of Fluidized Electrodes |
|
|
449 | (1) |
|
Need for Fluidized Electrodes |
|
|
449 | (1) |
|
|
450 | (1) |
|
|
451 | (1) |
|
|
451 | (1) |
|
|
451 | (1) |
|
|
452 | (1) |
|
Criteria for Cell Geometry |
|
|
452 | (1) |
|
Anode Chamber and Electrolyte |
|
|
453 | (1) |
|
|
454 | (1) |
|
Modeling of Fluidized Electrodes |
|
|
455 | (1) |
|
|
455 | (1) |
|
Potential and Current Distribution |
|
|
455 | (1) |
|
|
456 | (1) |
|
|
457 | (1) |
|
|
457 | (1) |
|
|
458 | (1) |
|
|
458 | (1) |
|
Three-Phase Fluidized Electrodes |
|
|
459 | (1) |
|
|
459 | (1) |
|
|
460 | (1) |
|
Third-Phase-Injected Type |
|
|
460 | (1) |
|
Third-Phase-Generated Type |
|
|
460 | (1) |
|
|
461 | (1) |
|
Fluidized Bed Electrodes in Copper Extraction |
|
|
461 | (1) |
|
Fluidized Bed Electrodes in Nickel Extraction |
|
|
462 | (1) |
|
Electrowinning of Cobalt, Silver, and Zinc |
|
|
463 | (1) |
|
|
463 | (1) |
|
|
464 | (1) |
|
|
465 | (1) |
|
Fluidized Bed Electrodes in Aqueous Waste Treatment |
|
|
466 | (1) |
|
Miscellaneous Applications |
|
|
467 | (1) |
|
Fluidized Bed Bioprocessing |
|
|
468 | (19) |
|
|
468 | (1) |
|
|
469 | (1) |
|
|
469 | (1) |
|
Mineral and Metal Extraction |
|
|
469 | (3) |
|
|
472 | (1) |
|
|
472 | (1) |
|
|
473 | (3) |
|
Fluidized Bed Bioreactors |
|
|
476 | (2) |
|
|
478 | (2) |
|
|
480 | (7) |
Index |
|
487 | |