Atjaunināt sīkdatņu piekrišanu

Fluid Bed Technology in Materials Processing [Hardback]

, (Bhabha Atomic Res Centre, Bombay, India)
  • Formāts: Hardback, 524 pages, height x width: 229x152 mm, weight: 929 g
  • Izdošanas datums: 28-Dec-1998
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 0849348323
  • ISBN-13: 9780849348327
  • Hardback
  • Cena: 210,77 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 524 pages, height x width: 229x152 mm, weight: 929 g
  • Izdošanas datums: 28-Dec-1998
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 0849348323
  • ISBN-13: 9780849348327
Examines aspects of fluidization engineering, elaborating on applications in materials processing and bioengineering. Analyzes fluidization in the nuclear engineering and nuclear fuel cycle, and evaluates new fluidized beds in materials processing, bioengineering, and downstream processing. Introduces principles and applications of fluidization engineering, and discusses design aspects and modeling, incorporating distributor effects and flow regimes. Presents industrial applications with examples in extraction and process metallurgy. For those in metallurgy, chemical engineering, high-temperature materials, and nuclear chemical engineering. The authors are affiliated with the Bhabha Atomic Research Center. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Fluid Bed Technology in Materials Processing comprehensively covers the various aspects of fluidization engineering and presents an elaborate examination of the applications in a multitude of materials processing techniques.
This singular resource discusses:
  • All the basic aspects of fluidization essential to understand and learn about various techniques
  • The range of industrial applications
  • Several examples in extraction and process metallurgy
  • Fluidization in nuclear engineering and nuclear fuel cycle with numerous examples
  • Innovative techniques and several advanced concepts of fluidization engineering, including use and applications in materials processing as well as environmental and bio-engineering
  • Pros and cons of various fluidization equipment and specialty of their applications, including several examples
  • Design aspects and modeling
  • Topics related to distributors effects and flow regimes
    A separate chapter outlines the importance of fluidization engineering in high temperature processing, including an analysis of the fundamental concepts and applications of high temperature fluidized bed furnaces for several advanced materials processing techniques.
    Presenting information usually not available in a single source, Fluid Bed Technology in Materials Processing serves
  • Fluidization engineers
  • Practicing engineers in process metallurgy, mineral engineering, and chemical metallurgy
  • Researchers in the field of chemical, metallurgical, nuclear, biological, environmental engineering
  • Energy engineering professionals
  • High temperature scientists and engineers
  • Students and professionals who adopt modeling of fluidization in their venture for design and scale up
  • Foreword iii
    Preface iv
    Dedication vi
    Acknowledgments vii
    The Authors viii
    Generalities and Basics of Fluidization
    1(126)
    Introduction
    1(6)
    Fluidike Behavior
    1(1)
    Fluidization State
    2(1)
    Gas/Liquid Flow
    2(1)
    Onset of Fluidization
    3(1)
    Situation at the Onset of Fluidization
    4(1)
    Bed Pressure Drop
    4(2)
    Advantages of Fluidized Bed
    6(1)
    Disadvantages of Fluidized Bed
    6(1)
    Properties of Particles and the Granular Bed
    7(7)
    Particles
    7(1)
    Size
    7(1)
    Definition
    7(2)
    Sphericity
    9(1)
    Roughness
    10(1)
    Granular Bed
    11(1)
    Bed Porosity or Voidage
    11(1)
    Voidage and Packing
    11(1)
    Polydisperse System
    12(1)
    Container Effect
    12(1)
    Important Properties of Particulate Solids
    13(1)
    Density
    13(1)
    Angular Properties
    14(1)
    Grouping of Gas Fluidization
    14(9)
    Hydrodynamics-Based Groups
    14(1)
    Geldart Groups
    14(3)
    Molerus Groups
    17(1)
    Clark et al. Groups
    18(1)
    Dimensionless Geldart Groups
    19(1)
    Hydrodynamics- and Thermal-Properties-Based Groups
    20(1)
    Variables Affecting Fluidization
    21(1)
    Varieties of Fluidization
    22(1)
    Hydrodynamics of Two-Phase Fludization
    23(23)
    Minimum Fluidization Velocity
    23(1)
    Experimental Determination
    23(1)
    Pressure Drop Method
    23(1)
    Voidage Method
    24(1)
    Heat Transfer Method
    24(1)
    Theoretical Predictions
    25(1)
    Dimensional Analysis (Direct Correlation)
    25(1)
    Drag Force Method
    25(4)
    Pressure Drop Method
    29(3)
    Terminal Velocity Method
    32(2)
    Terminal Velocity
    34(1)
    Definition
    34(1)
    Mathematical Representation
    34(1)
    Drag Coefficient
    35(1)
    Evaluation of Drag Coefficient
    36(1)
    Correlations for Drag Coefficient
    36(1)
    Terminal Velocity for Single Spherical Particle
    37(1)
    Difficulties in Predicting Particle Terminal Velocity
    38(2)
    Some Advances in Predicting Particle Terminal Velocity
    40(3)
    Experimental Methods for Determining Particle Terminal Velocity
    43(1)
    Common Procedures
    43(1)
    Relative Methods
    44(2)
    Flow Phenomena
    46(5)
    Particulate and Aggregative Fluidization
    46(2)
    Regimes of Fluidization
    48(1)
    Bubbling Bed
    48(1)
    Turbulent Bed
    49(1)
    Fast Fluidization
    50(1)
    Dilute-Phase Flow
    50(1)
    Flow Regime Mapping
    51(1)
    Three-Phase Fluidization
    51(9)
    Introduction
    51(1)
    Classification
    52(1)
    Cocurrent Upflow of Gas-Liquid
    52(1)
    Countercurrent Flow
    53(2)
    Hydrodynamics
    55(1)
    Parameters
    55(1)
    Pressure Drop and Holdup
    55(2)
    Holdup Determination by Experiments
    57(1)
    Turbulent Contact Absorber
    58(2)
    Heat Transfer
    60(17)
    Introduction
    60(1)
    Groups
    61(1)
    Fluid-Particle Heat Transfer
    61(1)
    Steady State
    61(1)
    Unsteady State
    62(1)
    Bed-Wall Heat Transfer
    62(1)
    Models
    62(1)
    Film Model
    63(1)
    Modified Film Model
    63(1)
    Emulsion Packet Model
    63(1)
    Predictions of Heat Transfer Coefficient
    63(1)
    Additive Components
    64(1)
    Particle-Convective Component
    64(2)
    Gas-Convective Component
    66(1)
    Radiative Component
    67(1)
    Overall Heat Transfer Coefficient
    67(1)
    Heat Transfer to Immersed Surfaces
    68(1)
    Vertical Surfaces
    68(1)
    Horizontal Surfaces
    69(1)
    Effects of Operating Variables
    69(1)
    Effect of Velocity
    69(1)
    Heat Transfer Coefficient versus Velocity
    69(1)
    Flow Regime Effect
    70(2)
    Optimum Velocity
    72(2)
    Distributor Effects
    74(1)
    Heat Transfer in Liquid Fluidized Beds
    75(1)
    Differences with Gas-Solid Systems
    75(1)
    Heat Transfer
    75(1)
    Heat Transfer in Three-Phase Fluidized Bed
    76(1)
    Heat Transfer Coefficient
    76(1)
    Particle Size Effect
    77(1)
    Correlation
    77(1)
    Mass Transfer
    77(17)
    Introduction
    77(1)
    Mass Transfer Steps
    78(1)
    Mass Transfer Between Fluidized Bed and Object or Wall
    78(1)
    Correlations
    78(1)
    Influencing Parameters
    79(1)
    Role of Voidage
    79(1)
    Mass Transfer Between Particle and Fluid
    79(1)
    Comparison of Mass Transfer from Single Particle and Fixed Bed to Fluid
    79(1)
    Complexity in Measurement
    80(1)
    Correlations
    81(1)
    Height of Transfer Unit
    81(1)
    Velocity Effect
    82(1)
    Experimental Technique
    83(1)
    Mass Transfer Between Segregated Phases
    83(1)
    Gas-Exchange Hypothesis
    83(1)
    Gas Exchange Between Lean and Dense Phases (Two-Phase Model)
    84(1)
    Measurement of Gas-Exchange Rate
    85(1)
    Bubble Diameter
    86(1)
    Mass Transfer Derived from Bubbling Bed Model
    86(2)
    Mass Transfer in Three-Phase Fluidized Beds
    88(1)
    Driving Forces
    88(1)
    Volumetric Mass Transfer Coefficient
    89(1)
    Description
    89(1)
    Measurement Techniques
    89(1)
    Influencing Factors
    90(1)
    Effect of Flow Regimes
    90(1)
    Effect of Properties of Gas and Liquid
    91(1)
    Effect of Distributor Plate
    92(1)
    Effect of Bubble Population
    92(1)
    Liquid-Solid Mass Transfer
    93(1)
    End Zones
    94(33)
    Grid Zone
    94(1)
    Introduction
    94(1)
    Gas Jets
    94(1)
    Description
    94(1)
    Correlations
    95(1)
    Density Near the Grid
    96(1)
    Jet versus Spout
    96(1)
    Bubbles
    96(1)
    Dead Zone
    97(1)
    Elutriation
    98(1)
    Definition
    98(1)
    Entrainment Process
    98(1)
    Entrainment Rate
    98(1)
    Prediction by Bubble Dynamics Method
    98(2)
    Prediction by Mass Balance Method
    100(2)
    Kunii and Levenspiel Method
    102(1)
    Complexity of Parameter Determination
    102(1)
    Transport Disengaging Height
    103(1)
    Some Useful Remarks
    104(1)
    Nomenclature
    104(7)
    References
    111(16)
    Applications in Mineral, Metal, and Materials Extraction and Processing
    127(82)
    Drying
    127(21)
    Types of Fluid Bed Dryers
    127(1)
    Classification
    127(1)
    Description of Dryers
    128(3)
    Multistaging of Dryers
    131(1)
    Drying Basics
    131(1)
    Drying Rate
    131(1)
    Moisture Transport
    132(2)
    Characteristics of Dryers
    134(1)
    Well-Mixed Type
    134(1)
    Plug Flow Type
    135(1)
    Models
    136(1)
    Definition of Models
    136(1)
    Mass (Moisture) Transport
    136(1)
    Moisture at the Surface of the Particle
    137(1)
    Mass Balance Across a Gas Bubble
    138(1)
    Overall Mass Balance of a Fluid Bed Dryer
    138(1)
    Model Testing
    138(1)
    Constraints
    139(1)
    Vibro Fluidized Bed Dryer
    139(1)
    Basics
    140(1)
    Vibro Inclined Fluidized Bed
    141(1)
    Gas Velocity
    141(1)
    Heat Transfer
    142(1)
    Spouted Bed Dryer
    142(2)
    Internally Heated Dryer versus Inert Solid Bed Dryer
    144(1)
    Internally Heated Bed
    144(1)
    Inert Solid Bed
    144(1)
    Characteristics
    145(1)
    Performance
    145(1)
    Residence Time
    145(1)
    Performance Assessment
    146(1)
    Applications
    146(1)
    Iron Ore Drying
    146(1)
    Miscellaneous Areas
    147(1)
    Roasting
    148(17)
    Fluidization in Pyrometallurgy
    148(1)
    Industrial Noncatalytic Reactors
    148(1)
    Early Fluid Bed Roasters
    148(1)
    Zinc Blende Roasters
    149(1)
    Commercial Plants
    149(3)
    Operation
    152(1)
    Variables Selection
    152(1)
    Constraints
    153(1)
    Turbulent Fluid Bed Roaster
    154(1)
    Design Data
    154(2)
    Sulfation Roasters
    156(1)
    Sulfation Principles
    156(2)
    Fluid Bed Sulfation
    158(1)
    Iron, Nickel, and Copper Concentrates
    158(1)
    Cobaltiferrous Pyrite
    158(1)
    Cupriferrous Iron Ore
    159(1)
    Magnetic Roasting
    159(1)
    Importance
    159(1)
    Parameters
    160(1)
    Reaction
    160(1)
    Fluid Bed
    160(1)
    IRSID Process
    160(1)
    Two-Phase Reactor
    161(1)
    Segregation Roasting
    161(1)
    Cupriferrous Ore
    161(1)
    Other Processes
    162(1)
    Fluid Bed Roasters for Miscellaneous Metal Sulfides
    163(1)
    Chalcocite, Copper, and Arsenic Concentrates
    163(1)
    Pyritic Gold Ore
    163(1)
    Molybdenite and Cinnabar
    164(1)
    Troubleshooting in Fluid Bed Roasters
    164(1)
    Operation
    164(1)
    Exit Gas
    165(1)
    Models
    165(1)
    Calcination
    165(6)
    Definition
    165(1)
    Fluid Bed Calcination
    166(1)
    Limestone
    166(1)
    Cement, Bauxite, and Phosphate Rock
    167(1)
    Aluminum Trihydrate
    167(1)
    Circulating Fluidized Bed
    167(1)
    Operation
    168(1)
    Alumina
    168(1)
    Waste Calcination
    168(1)
    Chloride Waste
    168(2)
    Radioactive Waste
    170(1)
    Zirconium Fluoride Waste
    170(1)
    Some Useful Hints on Fluid Bed Calcination
    170(1)
    Direct Reduction
    171(11)
    Significance
    171(1)
    Iron Ore Reduction
    171(1)
    Advent of the Fluid Bed
    171(1)
    Fluid Bed Processes
    172(1)
    H-Iron Process
    172(1)
    Fluidized Iron Ore Reduction
    173(1)
    Nu-Iron Process
    173(1)
    Other Reduction Processes
    173(2)
    Reaction Aspects in Direct Reduction
    175(1)
    Reduction
    175(1)
    Reductants
    175(1)
    Troubleshooting in Fluosolid Reduction
    176(1)
    Defluidization
    176(1)
    Nodule Formation
    176(1)
    Temperature Effect
    177(1)
    Mechanism
    177(1)
    Feed Preheating
    177(1)
    Particle Carryover
    178(1)
    Sulfur Control
    178(1)
    Carbon Reductant
    178(1)
    Fluidization in Modern Iron Making
    179(1)
    Novel Processes
    179(1)
    Two-Stage Process
    179(1)
    Flue Dust Control
    180(1)
    Direct Reduction in Nonferrous Industries
    180(1)
    Metal Power Production
    180(1)
    Fluid Bed Reduction
    180(1)
    Copper and Nickel Powders
    180(1)
    Nickel and Titanium Powders
    181(1)
    Molybdenum Powder
    181(1)
    Recommendations
    182(1)
    Fluid Bed Halogenation
    182(27)
    Fluidization in Halide Metallurgy
    182(1)
    Introduction
    182(1)
    Chlorination and Fluidization
    183(1)
    Chloride Metallurgy
    183(1)
    Fluid Bed Chlorination
    184(1)
    Metal Oxide Chlorination
    184(2)
    Rutile Chlorination
    186(1)
    Reaction
    186(1)
    Mechanism
    186(1)
    Parameters
    187(1)
    Models
    187(1)
    Ilmenite Chlorination
    187(1)
    Chlorination for Beneficiation
    187(1)
    Direct Chlorination
    188(1)
    Selective Chlorination
    188(1)
    Models
    189(1)
    Some Highlights of Beneficiation
    189(1)
    Chlorination of Zirconium-Bearing Materials
    190(1)
    Chlorination in Zirconium Metallurgy
    190(1)
    General Studies
    190(1)
    Chlorination of Nuclear-Grade Zirconium Dioxide
    191(1)
    Chlorination Results
    191(1)
    Direct Chlorination of Zircon
    191(2)
    Columbite Ore and Molysulfide Chlorination
    193(1)
    Columbite Chlorination
    193(1)
    Molysulfide Chlorination
    193(1)
    Chlorination in Silicon Metal Production
    194(1)
    Chlorosilane
    194(1)
    Fluidization in Silicon Metal Production
    194(2)
    Chlorination/Fluorination of Aluminum-Bearing Materials
    196(1)
    Toth Process
    196(1)
    Aluminum Trifluoride
    197(1)
    Selective Chlorination for Nickel and Cobalt Recovery
    197(1)
    Principles
    197(1)
    Chlorination Studies
    197(1)
    Nomenclature
    198(1)
    References
    199(10)
    Fluidization in Nuclear Engineering
    209(62)
    Leaching
    209(23)
    Fluidized Bed Leaching
    209(1)
    General Description
    209(1)
    Uses
    210(1)
    Leaching Equipment
    210(1)
    Design Aspects of Leaching Column
    210(3)
    Staging
    213(1)
    Staged Fluidization
    213(1)
    Leaching
    213(1)
    Multistaging
    213(2)
    Uranium Extraction
    215(1)
    Fluidization in Nuclear Fuel Cycle
    215(1)
    Fluid Bed Denitration
    215(1)
    Thermal Decomposition of Uranyl Nitrate
    215(2)
    Fluidized Bed
    217(1)
    Calcination
    217(1)
    Caking
    218(1)
    Denitration Unit
    218(1)
    Reduction of Oxides of Uranium
    219(1)
    Oxides of Uranium
    219(2)
    Preparation
    221(1)
    Oxide Criteria
    221(1)
    Reactor Criteria
    222(1)
    Reduction Criteria
    222(1)
    Fluid Bed Reduction
    222(2)
    Hydrofluorination of Uranium Dioxide
    224(1)
    Reaction
    224(1)
    Fluid Bed Hydrofluorination
    225(1)
    Manufacture of Uranium Hexafluoride
    226(1)
    Fluorination
    226(1)
    Basic Reaction
    226(1)
    Flame Reactor
    227(1)
    Fluid Bed
    227(1)
    Uranium Tetrafluoride Fluorination
    227(1)
    Direct Fluorination
    228(1)
    Engineering Studies
    229(1)
    Parameters Influence
    230(1)
    Reaction Rate
    230(1)
    Fluorization Reactor
    231(1)
    Reactor Control
    232(1)
    Fuel Material Preparation
    232(13)
    Pyrohydrolysis of Uranium Hexafluoride
    232(1)
    Reaction
    232(2)
    Fluid Bed
    234(1)
    Reactor
    234(1)
    Product
    235(1)
    Bed Depth Effect
    235(1)
    Fine Oxide Preparation
    235(1)
    Stoichiometric Uranium Monocarbide
    236(1)
    Uranium Carbide as Nuclear Fuel
    236(1)
    Reaction
    237(1)
    Need for Fluid Bed
    237(1)
    Fluid Bed Reactor
    238(1)
    Feed and Gas
    238(1)
    Reactor
    238(1)
    Product
    238(1)
    Other Carbides
    239(1)
    Carbides and Nitrides Directly from Uranium Dioxide
    239(1)
    Reaction Criteria
    239(1)
    Fluid Bed
    240(1)
    Reactor
    240(1)
    Operation
    240(1)
    Carburizing Agent
    241(1)
    Product Yield
    241(1)
    Recommendations
    242(1)
    Uranium Aluminide
    243(1)
    Appraisal
    243(1)
    Fluid Bed
    243(1)
    Reactor
    243(1)
    Reaction Steps
    243(2)
    Pyrocarbon Coating
    245(6)
    Reactor Choice
    245(1)
    Suitability
    245(2)
    Immersed Objects
    247(1)
    Coating Classification
    247(1)
    Classification of Pyrolytic Deposition
    247(1)
    Nonmetallic Coating
    247(1)
    Carbon Coating
    248(1)
    Silicon Carbide
    249(1)
    Fluid Bed
    249(1)
    Coating in Fluid Bed
    249(1)
    Coating Properties
    250(1)
    Recommendations
    251(1)
    Fluidization in Zirconium Extraction
    251(2)
    Breaking of Zircon
    251(1)
    Chlorination
    251(1)
    Fluid Bed
    252(1)
    Miscellaneous Uses
    252(1)
    Fluid Beds in Nuclear Fuel Reprocessing
    253(5)
    Fuel Reprocessing
    253(1)
    Methods
    253(1)
    Aqueous Methods
    253(1)
    Nonaqueous Methods
    254(1)
    Combined Methods
    255(1)
    Fluoride Volatility Process
    255(1)
    Process Description
    255(1)
    Fluid Bed
    256(1)
    Novel Fluid Bed Fuel Reprocessing
    257(1)
    Uranium-Aluminum/Uranium-Zirconium Fuel
    257(1)
    Oxide Fuel
    257(1)
    Carbide Fuel
    257(1)
    Fluidization in Waste Processing and Pollution Abatement
    258(13)
    Fluid Bed
    258(1)
    Selection
    258(1)
    Incineration
    259(1)
    Hazardous Waste
    259(1)
    Organic Wastes
    259(1)
    Off-Gas Treatment
    260(1)
    Criteria for Incinerator
    260(1)
    Constraints
    260(1)
    Fluid Bed
    260(1)
    Gas and Liquid Waste
    261(1)
    Off-Gas
    261(1)
    Liquid Waste
    262(1)
    Reclamation from Waste
    262(1)
    Nomenclature
    262(2)
    References
    264(7)
    High-Temperature Fluidized Bed Reactor
    271(78)
    Plasma, Plasma Furnaces, and Plasma Fluidized Bed
    271(8)
    Plasma
    271(1)
    Plasma State
    271(1)
    Charged Particles
    271(1)
    Collision
    272(1)
    Plasma Systems
    272(1)
    DC and AC Discharges
    273(2)
    RF Discharges
    275(1)
    Plasma Device Systems
    275(1)
    Gases for Plasma Generation
    275(1)
    Selection Criteria
    275(2)
    Properties
    277(1)
    Electrodes
    278(1)
    Power Source
    278(1)
    Arc Plasma Generator
    279(1)
    Plasma Furnaces
    279(4)
    Categories
    279(1)
    DC Plasma Furnace
    280(1)
    Short Residence Time
    280(1)
    Medium Residence Time
    281(1)
    Long Residence Time
    281(1)
    RF Plasma Furnace
    282(1)
    Plasma Fluidized Bed
    283(18)
    Plasma-Solid Interactions
    283(1)
    Heat Transfer to Solid
    283(1)
    Solid Quenching
    283(1)
    Plasma and Fluid Bed
    284(1)
    DC Plasma Fluid Bed
    284(1)
    Description
    284(1)
    Testing
    285(2)
    Inductively Coupled Plasma Fluid Bed
    287(1)
    Plasma Fluidized Bed Characteristics
    288(1)
    Interparticle Forces and Minimum Fluidization Velocity
    288(1)
    Plasma Interaction with Fluid Bed
    289(1)
    Tests
    289(1)
    Results
    290(1)
    Plasma Spouted Bed
    291(1)
    Tests
    291(1)
    Results
    292(1)
    Mechanism of Plasma Jet Quenching
    293(1)
    Plasma Gas Temperature
    293(1)
    Effect of Variables
    294(1)
    Plasma Jetting Fluid Bed
    294(1)
    Reactor
    294(1)
    Methane Decomposition Studies (DC Plasma)
    294(2)
    Methane Pyrolysis Studies (Inductive Plasma)
    296(1)
    Local Characteristics
    296(2)
    Radially Coalesced Plasma
    298(1)
    Feeding Methods of Particulate Solids in Plasma
    299(1)
    Gas-Solid Feeding
    299(1)
    Feeder Types
    299(2)
    Application of Plasma Fluidized Bed in Materials Processing
    301(9)
    Scope of Plasma Application in Extractive Metallurgy
    301(1)
    Plasma Fluid Bed Processes
    302(1)
    Particulate Processes
    302(1)
    Spheroidizing
    302(1)
    Coating
    303(1)
    Advanced Materials Processing
    303(1)
    Fine Powders
    303(2)
    Particle Nitriding
    305(1)
    Diamond Synthesis
    306(1)
    Salt Roasting in Spout Fluid Bed
    307(1)
    Spout Fluid Bed Reactor
    307(1)
    Performance Stability
    308(1)
    Miscellaneous Applications
    308(1)
    Carbothermy
    308(1)
    Carburization
    309(1)
    Gasification
    309(1)
    Electrothermal Fludized Bed
    310(39)
    Description
    310(1)
    Principle
    310(1)
    Advantages
    310(1)
    Configurations
    311(1)
    Construction
    312(1)
    Temperature Range
    312(1)
    Furnace Details
    313(1)
    Characteristics of Electrothermal Fluidized Beds
    314(1)
    Bed Resistance
    314(1)
    Manipulating Variables
    314(1)
    Gas-Solid System
    314(1)
    Mechanism of Electrocity Transfer
    314(1)
    Ohmic Law
    315(1)
    Model for Bed Resistance
    316(1)
    Measurements
    316(1)
    Effect of Gas Velocity
    317(1)
    Effect of Particle Size
    318(1)
    Effect of Bed Voidage
    319(1)
    Resistivity and Bed Status
    320(1)
    Effect of Particle Shape
    321(1)
    Effect of Current Density
    321(2)
    Effect of Bed Height and Diameter
    323(1)
    Effect of Temperature
    323(3)
    Effect of Pressure
    326(2)
    Contact Resistance
    328(1)
    Effect of Distributor
    329(1)
    Effect of Nonconducting Solids
    329(3)
    Operating Temperature
    332(1)
    Controlling Factors
    332(1)
    Temperature Range
    332(1)
    Limiting Cases
    332(1)
    Power Loading and Control
    333(1)
    Electrically Stabilized versus Electrothermal Fluidized Bed
    333(2)
    Applications
    335(1)
    General
    335(1)
    Classification
    336(1)
    Chlorination
    336(1)
    Zirconium Dioxide Chlorination
    336(1)
    Zircon Chlorination
    337(1)
    Miscellaneous Applications
    338(1)
    Nomenclature
    338(2)
    References
    340(9)
    Fluid Bed Design Aspects
    349(84)
    Operating Velocity
    349(11)
    Classification
    349(1)
    Hydrodynamics Operating Velocity
    349(1)
    Range
    349(1)
    Stability of Operation
    350(1)
    Complexity
    350(1)
    Pressure Drop Criterion
    350(1)
    Grid/Distributor Pressure Drop Criterion
    350(2)
    Critical Grid Resistance Ratio
    352(1)
    Backmixing Critical Velocity
    353(1)
    Operating Velocity Under Condition of Particle Attrition or Agglomeration
    353(1)
    Operating Velocity for Minimizing Solid Leakage Through Distributor
    354(1)
    Solid Leakage or Weeping Through Grids
    354(1)
    Operating Velocity at a Desired Solid Weeping Rate
    354(1)
    Operating Velocity Based on Maximum Bubble Size
    355(2)
    Operating Velocity for Optimum Heat Transfer
    357(1)
    Maximum Heat Transfer
    357(1)
    Optimum Velocity
    357(1)
    Operating Velocity Dependent on Chemical Reaction
    358(1)
    Stoichiometric Considerations
    358(1)
    Conversion Consideration
    359(1)
    Aspect Ratio
    360(2)
    Significance
    360(1)
    Distributor Effect
    360(1)
    Bubble Size Effect
    361(1)
    Key Influencing Parameters
    361(1)
    Predictions
    362(1)
    Distributors
    362(15)
    Introduction
    362(1)
    Functions of Distributor
    363(1)
    Importance of Distributor
    363(1)
    Hydrodynamic Factors
    363(1)
    Interfacial Area Factor
    364(1)
    Influence on Bed Behavior
    365(1)
    Two-Phase Fluidization
    365(1)
    Three-Phase Fluidization
    365(1)
    Types of Distributors
    366(1)
    Conventional Distributors for Gas or Liquid
    366(1)
    Improved Gas-Liquid Distributors
    367(1)
    Common Distributors for Gas and Liquid
    368(1)
    Advanced Gas-Liquid Distributors
    369(1)
    Pressure-Drop-Dependent Distributors
    370(1)
    Classification Criteria
    370(1)
    Low-Pressure-Drop Distributor
    370(1)
    High-Pressure-Drop Distributor
    371(1)
    Pressure Drop
    371(1)
    Selection Criteria
    371(1)
    General Rule
    371(1)
    Kinetic Energy
    372(1)
    Stable State
    372(1)
    Operation of Gas-Issuing Ports
    372(1)
    Significance of Pressure Drop
    373(1)
    Prediction of Pressure Drop Ratio
    373(1)
    Minimum Operating Velocity Criteria
    374(1)
    Tuyeres Operation
    374(1)
    Multiorifice Plate
    375(1)
    Recommendations
    376(1)
    Optimal Design Approach
    377(9)
    Reaction Kinetics with Hydrodynamics-Satisfied Design
    377(1)
    Kinetic Approach
    377(1)
    Hydrodynamics Approach
    378(1)
    Distributor Design Model
    378(1)
    Ratio of Pitch to Orifice Diameter
    378(2)
    Guidelines for Fixing Ratio of Pitch to Orifice Diameter
    380(1)
    Multiple Choices for Operation and Selection of Ratio of Pitch to Orifice Diameter
    381(1)
    Distributor for Three-Phase Fluidization
    382(2)
    Plenum Chamber
    384(1)
    Pumping Energy
    385(1)
    Modeling Aspects
    386(47)
    Introduction
    386(1)
    Grid Zone
    387(1)
    Main Bubbling Bed
    387(1)
    Freeboard Zone
    388(1)
    Some Basic Aspects of Modeling
    389(1)
    Two-Phase Model
    390(3)
    Bubbling Bed Models
    393(1)
    Model Types
    394(4)
    Model Analysis
    398(1)
    Davidson and Harrison Model
    398(4)
    Kunii and Levenspiel Model
    402(1)
    Kato and Wen Model
    403(2)
    Partridge and Rowe Model
    405(2)
    Comparison of Models
    407(2)
    Some Modern Models
    409(2)
    Werther Model
    411(2)
    Fryer and Potter Model
    413(1)
    Peters et al. Model
    414(1)
    Slugging Bed Models
    414(2)
    Stochastic Model
    416(1)
    Industrial-Scale Reactors
    417(1)
    Fluidized Bed Reactor Efficiency
    417(2)
    Nomenclature
    419(4)
    References
    423(10)
    Some Advanced Application Areas of Fluidization
    433(54)
    New Technique
    433(16)
    Magnetically Stabilized Fluidized Beds
    433(1)
    Introduction
    433(1)
    Basics
    434(1)
    Characteristics
    435(1)
    Semifluidized Bed
    436(1)
    Description
    436(2)
    Minimum Semifluidization Velocity
    438(1)
    Maximum Semifluidization Velocity
    438(1)
    Pressure Drop and Voidage
    439(1)
    Limiting Factors and Applications
    439(1)
    Spout Fluid Bed
    440(1)
    General Description
    440(1)
    Hydrodynamics
    441(1)
    Minimum Spout Fluidizing Velocity
    442(1)
    Spout Generation
    443(1)
    Draft Tube
    443(1)
    Centrifugal Fluidized Bed
    444(1)
    Concept
    444(1)
    Basics
    444(2)
    Applications
    446(1)
    Compartmented Fluidized Bed
    446(1)
    Interconnected Operation
    446(1)
    Compact Twin Beds
    447(1)
    Improved Design
    448(1)
    Application
    448(1)
    Fluidized Electrode Cells
    449(19)
    Basics of Fluidized Electrodes
    449(1)
    Need for Fluidized Electrodes
    449(1)
    Description
    450(1)
    Electrical Conduction
    451(1)
    Electrowinning Cells
    451(1)
    Selection
    451(1)
    Cell Types and Design
    452(1)
    Criteria for Cell Geometry
    452(1)
    Anode Chamber and Electrolyte
    453(1)
    Construction
    454(1)
    Modeling of Fluidized Electrodes
    455(1)
    Cell Parameters
    455(1)
    Potential and Current Distribution
    455(1)
    Charge Transport
    456(1)
    Current Density
    457(1)
    Model Development
    457(1)
    Particle Size Effect
    458(1)
    Current Feeder
    458(1)
    Three-Phase Fluidized Electrodes
    459(1)
    Role of the Third Phase
    459(1)
    Cells
    460(1)
    Third-Phase-Injected Type
    460(1)
    Third-Phase-Generated Type
    460(1)
    Applications
    461(1)
    Fluidized Bed Electrodes in Copper Extraction
    461(1)
    Fluidized Bed Electrodes in Nickel Extraction
    462(1)
    Electrowinning of Cobalt, Silver, and Zinc
    463(1)
    Cobalt
    463(1)
    Silver
    464(1)
    Zinc
    465(1)
    Fluidized Bed Electrodes in Aqueous Waste Treatment
    466(1)
    Miscellaneous Applications
    467(1)
    Fluidized Bed Bioprocessing
    468(19)
    Introduction
    468(1)
    Bioassisted Processes
    469(1)
    Microorganisms
    469(1)
    Mineral and Metal Extraction
    469(3)
    Bioreactors
    472(1)
    Requirements
    472(1)
    Types
    473(3)
    Fluidized Bed Bioreactors
    476(2)
    Nomenclature
    478(2)
    References
    480(7)
    Index 487
    Gupta, C. K.; Sathiyamoorthy, D.