Preface |
|
xiii | |
Nomenclature |
|
xv | |
1 Introduction |
|
1 | (8) |
|
|
1 | (1) |
|
1.2 The importance of chemistry, heat transfer and fluid mechanics in fires |
|
|
2 | (5) |
|
|
3 | (1) |
|
|
3 | (2) |
|
1.2.3 Fluid mechanics and turbulence |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
7 | (2) |
2 Turbulent flows with chemical reaction |
|
9 | (60) |
|
2.1 Fluid properties state properties mixtures |
|
|
9 | (6) |
|
|
9 | (5) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
11 | (1) |
|
2.1.1.4 Conduction coefficient |
|
|
12 | (1) |
|
2.1.1.5 Diffusion coefficient |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
2.1.2.6 Equation of state |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
15 | (9) |
|
|
16 | (2) |
|
|
18 | (5) |
|
|
18 | (2) |
|
|
20 | (3) |
|
|
23 | (1) |
|
|
24 | (17) |
|
2.3.1 Conservation of mass |
|
|
24 | (3) |
|
|
27 | (1) |
|
2.3.3 Conservation of energy |
|
|
28 | (9) |
|
|
31 | (1) |
|
|
32 | (2) |
|
|
34 | (3) |
|
2.3.4 Transport of species |
|
|
37 | (1) |
|
|
37 | (4) |
|
|
41 | (1) |
|
|
42 | (2) |
|
|
44 | (3) |
|
2.7 Non-dimensional numbers |
|
|
47 | (3) |
|
|
47 | (1) |
|
|
47 | (2) |
|
|
49 | (1) |
|
|
50 | (8) |
|
|
50 | (1) |
|
|
51 | (4) |
|
2.8.3 Turbulence modeling |
|
|
55 | (14) |
|
|
55 | (1) |
|
|
55 | (2) |
|
2.8.3.3 Turbulence modelling |
|
|
57 | (1) |
|
|
58 | (4) |
|
2.10 Internal flows pressure losses |
|
|
62 | (2) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
67 | (2) |
3 Turbulent flames and fire plumes |
|
69 | (60) |
|
|
69 | (7) |
|
3.1.1 Flammability limits threshold temperature |
|
|
71 | (4) |
|
|
75 | (1) |
|
3.1.3 Flammability of liquid fuels |
|
|
75 | (1) |
|
|
76 | (6) |
|
3.2.1 Laminar premixed flame structure |
|
|
76 | (1) |
|
3.2.2 Laminar burning velocity |
|
|
77 | (2) |
|
3.2.3 The effect of turbulence |
|
|
79 | (3) |
|
|
82 | (4) |
|
3.3.1 Laminar diffusion flame structure |
|
|
82 | (3) |
|
3.3.2 The effect of turbulence |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
86 | (5) |
|
|
86 | (3) |
|
|
89 | (2) |
|
|
91 | (20) |
|
|
91 | (14) |
|
3.5.1.1 Average flame height |
|
|
93 | (4) |
|
3.5.1.2 Temperature evolution |
|
|
97 | (2) |
|
3.5.1.3 Kelvin-Helmholtz instability |
|
|
99 | (3) |
|
3.5.1.4 The effect of wind |
|
|
102 | (1) |
|
3.5.1.5 Transition from buoyancy-driven to momentum-driven jets |
|
|
103 | (1) |
|
|
104 | (1) |
|
3.5.2 Interaction with non-combustible walls |
|
|
105 | (1) |
|
3.5.3 Interaction with non-combustible ceiling |
|
|
106 | (1) |
|
3.5.4 The effect of ventilation |
|
|
107 | (3) |
|
3.5.4.1 Reduced oxygen at ambient temperature |
|
|
108 | (1) |
|
3.5.4.2 Oxygen-enriched fire plumes |
|
|
109 | (1) |
|
3.5.4.3 Vitiated conditions |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
111 | (18) |
|
3.6.1 Flame spread velocity a heat balance |
|
|
112 | (6) |
|
3.6.1.1 Opposed flow flame spread over a thermally thick fuel |
|
|
112 | (4) |
|
3.6.1.2 Opposed flow flame spread over a thermally thin fuel |
|
|
116 | (1) |
|
3.6.1.3 Concurrent flow flame spread over a thermally thick fuel |
|
|
117 | (1) |
|
3.6.1.4 Concurrent flow flame spread over a thermally thin fuel |
|
|
117 | (1) |
|
3.6.2 Gas phase phenomena |
|
|
118 | (1) |
|
|
118 | (4) |
|
3.6.3.1 Natural convection |
|
|
118 | (2) |
|
3.6.3.2 Concurrent airflow |
|
|
120 | (1) |
|
3.6.3.3 Counter-current airflow |
|
|
121 | (1) |
|
|
122 | (3) |
|
|
125 | (1) |
|
3.6.6 Parallel vertical plates configuration |
|
|
126 | (2) |
|
3.6.7 Corner configuration |
|
|
128 | (1) |
4 Smoke plumes |
|
129 | (36) |
|
|
129 | (1) |
|
|
130 | (13) |
|
4.2.1 Theory and mathematical modelling |
|
|
131 | (9) |
|
4.2.1.1 Description of the configuration |
|
|
131 | (2) |
|
4.2.1.2 Conservation equations of mass, momentum and energy |
|
|
133 | (3) |
|
4.2.1.3 Model development under the Boussinesq approximation |
|
|
136 | (4) |
|
4.2.1.4 List of assumptions |
|
|
140 | (1) |
|
|
140 | (3) |
|
|
143 | (3) |
|
4.3.1 Description of the configuration |
|
|
143 | (1) |
|
4.3.2 Conservation equations |
|
|
144 | |
|
4.3.3 Experimental studies |
|
|
143 | (3) |
|
4.3.4 Transition from line to axisymmetric plume |
|
|
146 | (1) |
|
4.4 Wall and corner interaction with plumes |
|
|
146 | (5) |
|
4.4.1 Detailed example: line plume bounded by an adiabatic wall |
|
|
147 | (3) |
|
4.4.2 General correlations for wall and corner configurations |
|
|
150 | (1) |
|
4.5 Interaction of a plume with a ceiling |
|
|
151 | (5) |
|
4.5.1 Description of a ceiling-jet |
|
|
151 | (1) |
|
4.5.2 Alpert's Integral model |
|
|
152 | (2) |
|
4.5.3 Simplified correlations |
|
|
154 | (1) |
|
4.5.4 Additional considerations |
|
|
155 | (1) |
|
4.5.5 Smoke layer build-up in a room |
|
|
156 | (1) |
|
4.6 Balcony and window spill plumes |
|
|
156 | (2) |
|
4.6.1 Balcony spill plumes |
|
|
156 | (1) |
|
|
157 | (1) |
|
4.7 Scaling laws and buoyant releases |
|
|
158 | (2) |
|
|
160 | (5) |
|
4.8.1 Analytical solution for the Line plume problem |
|
|
160 | (2) |
|
4.8.2 Design of a reduced-scale helium/air mixture experiment of a car fire in a tunnel |
|
|
162 | (3) |
5 Fire and smoke dynamics in enclosures |
|
165 | (42) |
|
5.1 Some fundamentals on flows through openings |
|
|
165 | (2) |
|
|
167 | (26) |
|
|
168 | (4) |
|
5.2.1.1 Fuel-controlled growing fire |
|
|
168 | (4) |
|
5.2.1.2 Ventilation-controlled growing fire |
|
|
172 | (1) |
|
|
172 | (2) |
|
5.2.3 Flows through openings |
|
|
174 | (9) |
|
5.2.3.1 Horizontal openings |
|
|
174 | (5) |
|
5.2.3.2 Vertical openings |
|
|
179 | (4) |
|
5.2.4 Natural and mechanical ventilation |
|
|
183 | (6) |
|
|
189 | (4) |
|
|
193 | (10) |
|
|
193 | (2) |
|
|
195 | (1) |
|
5.3.3 Flows through openings |
|
|
195 | (7) |
|
5.3.3.1 Horizontal openings |
|
|
195 | (3) |
|
5.3.3.2 Vertical openings |
|
|
198 | (4) |
|
5.3.4 Natural and mechanical ventilation |
|
|
202 | (1) |
|
|
202 | (1) |
|
|
203 | (2) |
|
|
205 | (1) |
|
5.6 Fires in well-confined enclosures |
|
|
205 | (2) |
6 Driving forces in smoke and heat control |
|
207 | (30) |
|
6.1 Buoyancy the stack effect |
|
|
207 | (3) |
|
6.1.1 Natural stack effect |
|
|
207 | (3) |
|
6.2 Fire-induced buoyancy |
|
|
210 | (3) |
|
|
213 | (1) |
|
|
214 | (4) |
|
6.5 Mechanical ventilation |
|
|
218 | (7) |
|
6.5.1 Vertical ventilation |
|
|
218 | (2) |
|
6.5.2 Horizontal ventilation |
|
|
220 | (17) |
|
|
220 | (3) |
|
6.5.2.2 Other underground structures |
|
|
223 | (2) |
|
|
225 | (2) |
|
|
227 | (3) |
|
6.8 Positive pressure ventilation |
|
|
230 | (3) |
|
|
233 | (2) |
|
|
235 | (2) |
7 Impact of water on fire and smoke dynamics |
|
237 | (34) |
|
7.1 Individual evaporating water droplet |
|
|
237 | (10) |
|
7.1.1 Heat and mass transfer |
|
|
237 | (7) |
|
|
244 | (3) |
|
7.2 Sprays of water droplets |
|
|
247 | (10) |
|
7.2.1 Characterization of sprays |
|
|
247 | (6) |
|
7.2.1.1 Region near the nozzle |
|
|
247 | (2) |
|
|
249 | (1) |
|
7.2.1.3 Droplet size and velocity distribution |
|
|
249 | (3) |
|
|
252 | (1) |
|
7.2.2 Spray-induced momentum |
|
|
253 | (2) |
|
|
255 | (2) |
|
7.3 Heat absorption by water |
|
|
257 | (4) |
|
7.4 Interaction of water with smoke |
|
|
261 | (5) |
|
7.4.1 Sprinkler and water mist sprays |
|
|
261 | (4) |
|
|
265 | (1) |
|
|
266 | (1) |
|
7.5 Interaction of water with flames |
|
|
266 | (1) |
|
7.6 Water as fire suppressant |
|
|
267 | (4) |
8 Introduction to fire modelling in computational fluid dynamics |
|
271 | (80) |
|
|
271 | (1) |
|
8.2 Laminar diffusion flames |
|
|
272 | (5) |
|
8.2.1 Instantaneous transport equations |
|
|
272 | (1) |
|
8.2.2 Combustion modelling |
|
|
273 | (4) |
|
8.2.2.1 Infinitely fast chemistry |
|
|
274 | (2) |
|
8.2.2.2 Finite-rate chemistry |
|
|
276 | (1) |
|
|
277 | (6) |
|
|
277 | (1) |
|
|
278 | (3) |
|
|
281 | (2) |
|
8.4 Turbulent non-premixed combustion |
|
|
283 | (6) |
|
8.4.1 Infinitely fast chemistry with a presumed PDF |
|
|
283 | (4) |
|
8.4.1.1 Flame sheet model |
|
|
285 | (1) |
|
8.4.1.2 Chemical equilibrium model |
|
|
285 | (1) |
|
8.4.1.3 Steady Laminar Flamelet Modelling (SLFM) |
|
|
286 | (1) |
|
8.4.2 Finite rate chemistry |
|
|
287 | (2) |
|
8.4.2.1 Eddy Break-Up (EBU) model and Eddy Dissipation Model (EDM) |
|
|
287 | (1) |
|
8.4.2.2 Eddy Dissipation Concept (EDC) |
|
|
288 | (1) |
|
8.4.2.3 Conditional Moment Closure (CMC) |
|
|
288 | (1) |
|
8.4.2.4 Transported PDF models |
|
|
289 | (1) |
|
|
289 | (5) |
|
8.5.1 Models for radiative transfer |
|
|
291 | (1) |
|
8.5.1.1 The P-1 Radiation Model |
|
|
291 | (1) |
|
8.5.1.2 The Finite Volume Method (FVM) |
|
|
291 | (1) |
|
8.5.2 Models for the absorption coefficient |
|
|
292 | (1) |
|
8.5.3 Turbulence Radiation Interaction (TRI) |
|
|
292 | (2) |
|
|
294 | (11) |
|
8.6.1 Soot nature, morphology and general description of its chemistry |
|
|
295 | (1) |
|
8.6.2 Importance of soot modelling |
|
|
295 | (1) |
|
8.6.2.1 Sootiness and radiation |
|
|
295 | (1) |
|
8.6.2.2 Interaction of soot with carbon monoxide |
|
|
295 | (1) |
|
8.6.3 The sootiness of fuels |
|
|
296 | (1) |
|
8.6.3.1 The laminar smoke point height |
|
|
296 | (1) |
|
8.6.3.2 The Threshold Sooting Index (TSI) |
|
|
296 | (1) |
|
|
297 | (8) |
|
|
297 | (7) |
|
|
304 | (1) |
|
8.7 Basics of numerical discretization |
|
|
305 | (10) |
|
8.7.1 Discretization schemes |
|
|
305 | (3) |
|
8.7.1.1 Description of a 1-D example |
|
|
305 | (1) |
|
|
306 | (1) |
|
|
307 | (1) |
|
8.7.2 Initial and boundary conditions |
|
|
308 | (1) |
|
8.7.3 Properties of numerical methods |
|
|
309 | (5) |
|
|
309 | (1) |
|
|
309 | (3) |
|
|
312 | (1) |
|
|
312 | (2) |
|
|
314 | (1) |
|
8.7.4 Pressure-velocity coupling |
|
|
314 | (1) |
|
8.7.5 The importance of the computational mesh |
|
|
314 | (1) |
|
|
315 | (14) |
|
|
317 | (4) |
|
|
317 | (1) |
|
|
318 | (1) |
|
|
319 | (1) |
|
8.8.1.4 Turbulence inflow boundary conditions |
|
|
319 | (2) |
|
|
321 | (3) |
|
|
321 | (2) |
|
|
323 | (1) |
|
8.8.3 Open boundary conditions (natural ventilation) |
|
|
324 | (2) |
|
8.8.3.1 Velocity and scalars |
|
|
324 | (1) |
|
|
324 | (2) |
|
8.8.4 Mechanical ventilation and pressure effects |
|
|
326 | (3) |
|
|
326 | (1) |
|
8.8.4.2 Fan curves and pressure effects |
|
|
327 | (2) |
|
8.9 Examples of CFD simulations |
|
|
329 | (22) |
|
8.9.1 Non-reacting buoyant plume |
|
|
330 | (2) |
|
8.9.1.1 Test case description |
|
|
330 | (1) |
|
8.9.1.2 Simulation set-up |
|
|
330 | (1) |
|
|
330 | (2) |
|
8.9.2 Hot air plume impinging on a horizontal plate |
|
|
332 | (4) |
|
8.9.2.1 Test case description |
|
|
332 | (1) |
|
8.9.2.2 Simulation set-up |
|
|
332 | (2) |
|
|
334 | (2) |
|
8.9.3 Free-burning turbulent buoyant flame |
|
|
336 | (2) |
|
8.9.3.1 Test case description |
|
|
336 | (1) |
|
8.9.3.2 Simulation set-up |
|
|
336 | (1) |
|
|
337 | (1) |
|
8.9.4 Over-ventilated enclosure fire |
|
|
338 | (3) |
|
8.9.4.1 Test case description |
|
|
338 | (1) |
|
8.9.4.2 Simulation set-up and results |
|
|
339 | (2) |
|
8.9.5 Interaction of a hot air plume with a water spray |
|
|
341 | (1) |
|
8.9.5.1 Test case description |
|
|
342 | (1) |
|
8.9.5.2 Simulation set-up |
|
|
342 | (1) |
|
|
342 | (1) |
|
8.9.6 Underventilated enclosure fire with mechanical ventilation |
|
|
342 | (3) |
|
8.9.6.1 Test case description |
|
|
342 | (1) |
|
8.9.6.2 Simulation set-up |
|
|
343 | (1) |
|
|
344 | (1) |
|
8.9.7 Fire spread modelling |
|
|
345 | (6) |
References |
|
351 | (12) |
Subject index |
|
363 | |