Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fly Ash Zeolites: Innovations, Applications, and Directions

  • Formāts: PDF+DRM
  • Sērija : Advanced Structured Materials 78
  • Izdošanas datums: 27-May-2016
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789811014048
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 130,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Advanced Structured Materials 78
  • Izdošanas datums: 27-May-2016
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789811014048
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book presents a thorough review of the state-of-knowledge and recent innovations in the synthesis of pure and improved grades of fly ash zeolites (FAZ). Addressing improvements to conventional methods, it also showcases a novel technique for the synthesis of high cation exchangers from fly ash and detailed characterization techniques for the products obtained. In addition, it examines in detail various areas of specific applications of fly ash zeolites.  Over the years, several methods such as hydrothermal, fusion prior to hydrothermal, microwave assisted hydrothermal and molten salt techniques for producing FAZ have been developed. However, one-step and two-step reactions between the fly ash and alkali usually generate alkaline wastes that may cause environmental contamination. In addition, the separation of FAZ from the partially activated fly ash (the impurities) remains a major concern for researchers and industrialists alike. In view of these challenges, this book presents a novel technique for three-step activation (TSA), which focuses on recycling the fly ash-NaOH-water reaction by-products until zeolitic residue is formed. The FAZ (the final residue after third step reactions) synthesized in this manner exhibits exceptionally high cation exchange capacity, specific surface area and pore area. This book offers a comprehensive compendium of reading material on fly ash and its recycled product, the zeolites. Students at both undergraduate and graduate levels, researchers, and practicing engineers will all find this book to be a valuable guide in their respective fields.
1 Introduction
1(4)
1.1 General
1(2)
1.2 Conclusions
3(2)
2 Basics of Zeolites
5(28)
2.1 Zeolites
5(23)
2.1.1 Natural Zeolites
8(1)
2.1.2 Synthetic Zeolites
8(1)
2.1.3 Properties of Zeolites
9(1)
2.1.4 Physical Properties
9(3)
2.1.5 Chemical Properties
12(1)
2.1.6 Ion Exchange and Adsorption Properties
13(1)
2.1.7 Mineralogical Properties
14(1)
2.1.8 Morphological Properties
15(3)
2.1.9 Thermal Characteristics of Zeolites
18(1)
2.1.10 Stability of Zeolites in Acidic Medium
19(2)
2.1.11 Crystal Structure of the Zeolite
21(1)
2.1.12 Framework Structure of Zeolitic Crystals
22(3)
2.1.13 Surface Properties
25(1)
2.1.14 Critical Evaluation of Properties of Some Commonly Available Zeolites
26(2)
2.2 Conclusions
28(5)
References
28(5)
3 Conventional Methods for Synthesis of Fly Ash Zeolites
33(20)
3.1 Methods of Synthesis of Zeolites
33(13)
3.1.1 Conventional Hydrothermal Method
35(6)
3.1.2 Microwave Assisted Hydrothermal Method
41(1)
3.1.3 Fusion and Hydrothermal Method
42(3)
3.1.4 Molten Salt Method
45(1)
3.2 Critical Appraisal
46(2)
3.3 Conclusions
48(5)
References
49(4)
4 Mechanism of Zeolitization of Fly Ash
53(10)
4.1 Modelling of the Fly Ash Particle
53(1)
4.2 Chemical Reaction Potential of the Fly Ash
54(7)
4.3 Conclusions
61(2)
References
61(2)
5 Novel Techniques for Synthesis and Characterization of Fly Ash Zeolites
63(76)
5.1 Materials
64(1)
5.2 Alkali Activation of the Fly Ash
64(7)
5.2.1 A Novel Hydrothermal Technique
64(5)
5.2.2 Three Step Activation by Fusion Technique
69(2)
5.3 Characterization of Products
71(29)
5.3.1 Characterization of the Supernatant
71(2)
5.3.2 Characterization of the Alkali Activated Fly Ash (AAF)
73(17)
5.3.3 Determination of Crystallite Size
90(10)
5.4 Analysis of the Results of Hopper Ash and Lagoon Ash
100(34)
5.4.1 Superiority of Hopper Ash Over Lagoon Ash
100(7)
5.4.2 Variation of Silicon Aluminium Ratio (SAR)
107(8)
5.4.3 Correlation Between CEC and SAR
115(19)
5.5 Conclusions
134(5)
References
135(4)
6 Major Findings of the Three-Step Activation Technique
139(52)
6.1 Synthesis of Higher Grade Zeolites from Hopper Fly Ash
139(16)
6.1.1 Characteristics of the Filtrates
140(1)
6.1.2 Characteristics of the Hopper Fly Ash and Residues
140(15)
6.2 Purification of Fly Ash Zeolites
155(9)
6.2.1 Monitoring Relative Variations Between Two Steps of TSA
155(6)
6.2.2 A Conceptual Model for Step Wise Purification of FAZ
161(3)
6.3 Quantification of Transitions in Fly Ash-Zeolite and NaOH-Water Systems
164(8)
6.4 Formation of Meso- and Micro-pores by TSA
172(5)
6.5 Thermal Stability of Superior Fly Ash Zeolites Synthesized by TSA
177(1)
6.6 Synthesis of High Grade Zeolite by TSA-Fusion
178(6)
6.6.1 Need of Reactivation by Fusion
179(1)
6.6.2 Evaluation of Major Transition in the Residues of Three-Step Fusion
180(4)
6.7 Comparative Study of TSA Products Obtained from Hydrothermal and Fusion Methods
184(3)
6.7.1 Fourier Transform-Infrared (FT-IR) Analysis
185(2)
6.8 Conclusions
187(4)
References
187(4)
7 Applications of Fly Ash Zeolites: Case Studies
191(12)
7.1 Detergent Builder
191(2)
7.2 Heavy Metal Uptake
193(4)
7.3 As an Adsorbent
197(1)
7.4 Separation of Gases
198(1)
7.5 Partial Replacement of Cement
199(1)
7.6 Radioactive Waste Treatment
199(1)
7.7 Conclusions
200(3)
References
200(3)
8 Path Ahead
203(4)
8.1 Application of the Zeolites from the TSA
203(1)
8.2 Pore Network in the Zeolites from the TSA
203(1)
8.3 A Zero-Effluent Technique for Zeolite Synthesis
204(1)
8.3.1 Synthesis of the Special Fly Ash Based Cement
204(1)
8.3.2 Synthesis of New Grade of Zeolites from the Final Effluent
204(1)
8.4 A Pilot Plant Based on Hydrothermal Three-Step Activation
204(1)
8.5 Conclusions
205(2)
References
205(2)
Index 207
Dr Bhagwanjee Jha is a lecturer at Department of Civil Engineering, Babasaheb Bhimrao Ambedkar Government Polytechnic, Karad (D.P.), Dadra and Nagar Haveli (India). He obtained his PhD. from the Indian Institute of Technology Bombay, India. His academic and research experience on fly ash spans more than two decades. His research is multidisciplinary and focused on development of environmental cleanup strategies by applying fly ash zeolites. He is the recipient of prestigious Pedagogical Innovation Award-2015, instituted by Gujarat Technological University, Ahmadabad, Gujarat, India.





Dr Devendra Narain Singh is Institute Chair Professor at the Department of Civil Engineering, Indian Institute of Technology Bombay, India. He obtained his PhD from the Indian Institute of Technology Kanpur, India. His major area of research and practice is Environmental Geotechnology. His research is multidisciplinary and focused on geomaterials characterization. He is theeditor-in-chief of Environmental Geotechnics. He is a fellow of American Society of Civil Engineers (ASCE) and Indian National Academy of Engineers (INAE).