|
1 Deformation of Locally Free Actions and Leafwise Cohomology |
|
|
1 | (40) |
|
|
|
1 | (2) |
|
1.1 Locally free actions and their deformations |
|
|
3 | (4) |
|
1.1.1 Locally free actions |
|
|
3 | (2) |
|
1.1.2 Rigidity and deformations of actions |
|
|
5 | (2) |
|
1.2 Rigidity and deformation of flows |
|
|
7 | (4) |
|
1.2.1 Parameter rigidity of locally free R-actions |
|
|
7 | (3) |
|
1.2.2 Deformation of flows |
|
|
10 | (1) |
|
|
11 | (8) |
|
1.3.1 Definition and some basic properties |
|
|
11 | (3) |
|
1.3.2 Computation by Fourier analysis |
|
|
14 | (2) |
|
1.3.3 Computation by a Mayer--Vietoris argument |
|
|
16 | (1) |
|
|
17 | (2) |
|
1.4 Parameter deformation |
|
|
19 | (11) |
|
1.4.1 The canonical 1-form |
|
|
19 | (3) |
|
1.4.2 Parameter deformation of Rp-actions |
|
|
22 | (2) |
|
1.4.3 Parameter rigidity of some non-abelian actions |
|
|
24 | (4) |
|
1.4.4 A complete deformation for actions of GA |
|
|
28 | (2) |
|
1.5 Deformation of orbits |
|
|
30 | (7) |
|
1.5.1 Infinitesimal deformation of foliations |
|
|
30 | (1) |
|
1.5.2 Hamilton's criterion for local rigidity |
|
|
31 | (1) |
|
1.5.3 Existence of locally transverse deformations |
|
|
32 | (2) |
|
1.5.4 Transverse geometric structures |
|
|
34 | (3) |
|
|
37 | (4) |
|
2 Fundaments of Foliation Theory |
|
|
41 | (1) |
|
|
|
41 | (1) |
|
Part I Foliations by Example |
|
|
41 | (22) |
|
|
41 | (5) |
|
|
43 | (1) |
|
2.1.2 Morphisms of foliations |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
45 | (1) |
|
2.2 Transverse structures |
|
|
46 | (7) |
|
|
47 | (1) |
|
2.2.2 Transversely parallelizable foliations |
|
|
48 | (1) |
|
2.2.3 Riemannian foliations |
|
|
48 | (1) |
|
|
49 | (3) |
|
2.2.5 Transversely holomorphic foliations |
|
|
52 | (1) |
|
|
53 | (5) |
|
|
53 | (1) |
|
2.3.2 Linear foliation on the torus T2 |
|
|
53 | (1) |
|
2.3.3 One-dimensional foliations |
|
|
54 | (1) |
|
2.3.4 Reeb foliation on the 3-sphere S3 |
|
|
54 | (1) |
|
|
55 | (3) |
|
2.4 Suspension of diffeomorphism groups |
|
|
58 | (3) |
|
2.4.1 General construction |
|
|
58 | (1) |
|
|
59 | (2) |
|
2.5 Codimension 1 foliations |
|
|
61 | (2) |
|
|
61 | (1) |
|
2.5.2 Topological behavior of leaves |
|
|
62 | (1) |
|
Part II A Digression: Basic Global Analysis |
|
|
63 | (11) |
|
|
64 | (2) |
|
|
65 | (1) |
|
2.7 Transversely elliptic operators |
|
|
66 | (4) |
|
|
70 | (4) |
|
2.8.1 The basic de Rham complex |
|
|
70 | (2) |
|
2.8.2 The basic Dolbeault complex |
|
|
72 | (2) |
|
Part III Some Open Questions |
|
|
74 | |
|
2.9 Transversely elliptic operators |
|
|
74 | (1) |
|
2.9.1 Towards a basic index theory |
|
|
74 | (1) |
|
2.9.2 Existence of transversely elliptic operators |
|
|
75 | (1) |
|
2.9.3 Homotopy invariance of basic cohomology |
|
|
75 | (1) |
|
|
75 | (4) |
|
|
76 | (3) |
|
2.11 Deformations of Lie foliations |
|
|
79 | (8) |
|
2.11.1 Example of a deformation of an Abelian foliation |
|
|
80 | (1) |
|
|
80 | (3) |
|
|
83 | (4) |
|
3 Lectures on Foliation Dynamics |
|
|
87 | (64) |
|
|
|
87 | (2) |
|
|
89 | (2) |
|
|
91 | (5) |
|
|
96 | (5) |
|
|
101 | (5) |
|
3.5 Exponential complexity |
|
|
106 | (6) |
|
|
112 | (5) |
|
|
117 | (3) |
|
3.8 Classification schemes |
|
|
120 | (3) |
|
|
123 | (8) |
|
|
131 | (3) |
|
|
134 | (17) |
|
|
136 | (1) |
|
|
137 | (14) |
|
4 Transversal Dirac Operators on Distributions, Foliations, and G-Manifolds |
|
|
151 | |
|
|
|
151 | (1) |
|
4.1 Introduction to ordinary Dirac operators |
|
|
152 | (11) |
|
|
152 | (2) |
|
4.1.2 The ordinary Dirac operator |
|
|
154 | (3) |
|
4.1.3 Properties of Dirac operators |
|
|
157 | (3) |
|
4.1.4 The Atiyah--Singer Index Theorem |
|
|
160 | (3) |
|
4.2 Transversal Dirac operators on distributions |
|
|
163 | (4) |
|
4.3 Basic Dirac operators on Riemannian foliations |
|
|
167 | (6) |
|
4.3.1 Invariance of the spectrum of basic Dirac operators |
|
|
167 | (3) |
|
4.3.2 The basic de Rham operator |
|
|
170 | (2) |
|
4.3.3 Poincare duality and consequences |
|
|
172 | (1) |
|
4.4 Natural examples of transversal Dirac operators on G-manifolds |
|
|
173 | (5) |
|
4.4.1 Equivariant structure of the orthonormal frame bundle |
|
|
173 | (3) |
|
4.4.2 Dirac-type operators on the frame bundle |
|
|
176 | (2) |
|
4.5 Transverse index theory for G-manifolds and Riemannian foliations |
|
|
178 | |
|
4.5.1 Introduction: the equivariant index |
|
|
178 | (3) |
|
4.5.2 Stratifications of G-manifolds |
|
|
181 | (2) |
|
4.5.3 Equivariant desingularization |
|
|
183 | (1) |
|
4.5.4 The fine decomposition of an equivariant bundle |
|
|
184 | (2) |
|
4.5.5 Canonical isotropy G-bundles |
|
|
186 | (1) |
|
4.5.6 The equivariant index theorem |
|
|
187 | (3) |
|
4.5.7 The basic index theorem for Riemannian foliations |
|
|
190 | (5) |
|
|
195 | |