Atjaunināt sīkdatņu piekrišanu

E-grāmata: Forced-Flow Layer Chromatography

Edited by (Honorary Professor, University of Szeged, Szeged, Hungary; Scientific Advisor, Plant Protection Institute, Budapest, Hungary)
  • Formāts: PDF+DRM
  • Izdošanas datums: 01-Dec-2015
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780124202122
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 184,09 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 01-Dec-2015
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780124202122
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Forced-Flow Layer Chromatography (FFLC) provides readers with an update on the methods and techniques used in separation, a topic on which there are few devoted resources.Scientists in a variety of disciplines will find useful information on the many applications and developments that have taken place since the FFLC technique was first described by the authors nearly forty years ago.The book presents a number of variations of thin-layer chromatographic techniques, with special emphasis on overpressured-layer chromatography (OPLC) methods and newer developments, such as the BioArena System for biomedical analysis.In addition, it takes a close look at the specifics of forced-flow layer chromatography, from the evolution of the methodology to the nuances of using these techniques in a variety of applications where traditional TLC is not as effective.The versatility of these forced flow techniques opens up new vistas for the analysis of a large number of samples (up to 216) for high throughput screening and for the analysis of very complex matrices, while the development of BioArena extends the use of these techniques to challenging new areas of bioanalysis.Details a variety of forced-flow techniques, explaining how they markedly reduce developing time and result in less lateral diffusion and more compact spotsEmphasizes the benefits of OPLC separation techniques, a method pioneered by the authors nearly forty years agoDiscusses new developments, such as the BioArena system used to facilitate detection, isolation, and identification of new antimicrobials, antineoplastics, biopesticides, and other biologically active substances

Recenzijas

"...provides a comprehensive overview of the different approaches in FFLC, making it a valuable resource for everyone studying planar chromatography and its potential." --Analytical and Bioanalytical Chemistry

Papildus informācija

A review of the basic elements, separation methodologies, and biological detection potential of forced-flow layer chromatography, with special emphasis on overpressured layer chromatography
Contributors xi
Preface xiii
Chapter 1 Unique potentialities of layer liquid system—results, limitations, new demands 1(48)
1.1 Introductory Remarks
2(1)
1.2 History of Development of LLC—From PC Through TLC to HPTLC
2(3)
1.3 Main Conventional Layer Liquid Chromatographic Techniques: TLC and HPTLC
5(30)
1.3.1 TLC and its achievements, results, and limitations
5(21)
1.3.2 Partial renewal of TLC: The development of HPTLC and its potential
26(7)
1.3.3 Necessity of total renewal of TLC/HPTLC
33(1)
1.3.4 Attempts for eliminating drawbacks of TLC/HPTLC with surprising new observations
34(1)
1.4 The Optimum Mobile-Phase Velocity and Its Realization and Approach
35(1)
1.4.1 Innovations and development trends in LLC: Development of FFLC techniques
35(1)
1.4.2 Classification of present liquid chromatographic techniques—the place of FFLC techniques
35(1)
References
36(13)
Chapter 2 Overpressured-layer chromatography 49(138)
2.1 Introductory Remarks
50(1)
2.2 Steps to the Development of OPLC
51(3)
2.2.1 Basic elements of ultramicro chamber and its applicability and importance
51(2)
2.2.2 Development and features of PUM chamber: The basic instrument of OPLC
53(1)
2.3 Development of Experimental and First Commercial OPLC Instruments and Chromatoplates
54(5)
2.3.1 Experimental OPLC instruments
54(1)
2.3.2 First commercial OPLC instruments
55(3)
2.3.3 Chromatoplates for conventional OPLC development
58(1)
2.4 Development of Automatic OPLC Instrument and Cassette Systems as well as Other Innovative Steps
59(7)
2.4.1 Development of automatic OPLC instrument
59(1)
2.4.2 Cassette. systems for automated OPLC
60(3)
2.4.3 Main operating steps in OPLC
63(3)
2.5 Further OPLC-Like Developments and Their Potential
66(1)
2.6 Theoretical Aspects of OPLC
67(41)
2.6.1 Introductory remarks
67(1)
2.6.2 Characteristic features of eluent migration in OPLC
68(18)
2.6.3 Main characteristics of efficiency in OPLC and their influencing factors
86(22)
2.7 General and Characteristic Methods for OPLC
108(19)
2.7.1 PRISMA model—Optimization of mobile phases
108(4)
2.7.2 Some characteristics of quantitative evaluation of chromatograms in OPLC
112(12)
2.7.3 Aspects of validation in OPLC
124(3)
2.8 Special Technical and Methodological Solutions in OPLC
127(23)
2.8.1 Introductory remarks
127(10)
2.8.2 Multisystems with great innovative potential
137(13)
2.9 Analytical and Preparative Applications of OPLC Technical Solutions
150(27)
2.9.1 Analytical applications
150(16)
2.9.2 Preparative applications of OPLC
166(11)
References
177(10)
Chapter 3 Centrifugal layer chromatography-Rotation planar chromatography 187(36)
3.1 Introduction
187(2)
3.2 Principle and Theoretical Aspects of RPC
189(1)
3.3 Classification of RPC Technical Solutions
190(6)
3.3.1 Types of chambers
190(1)
3.3.2 The aim of the separation
191(1)
3.3.3 The number of samples and the manner of application
191(2)
3.3.4 Development modes
193(2)
3.3.5 The number of separation steps developments)
195(1)
3.3.6 On-line and off-line processes
196(1)
3.4 Instrumentation and Characteristics of RPC Techniques
196(7)
3.5 Preparation of Chromatoplates
203(1)
3.5.1 Analytical chromatographic plates
203(1)
3.5.2 Preparative chromatographic plates
203(1)
3.5.3 The column chamber
204(1)
3.6 Applications of RPC
204(12)
3.6.1 Preparative applications of RPC
205(6)
3.6.2 Analytical applications of RPC
211(1)
3.6.3 The multifunctionality of ExtraChrom
212(3)
3.6.4 RPC coupling with MS
215(1)
3.7 Advantages and Drawbacks of RPC—Future of RPC
216(2)
References
218(5)
Chapter 4 Planar chromatography using electroosmotic flow 223(62)
4.1 Introduction
223(2)
4.2 Theoretical
225(5)
4.3 Application of Electroosmotic Effect to Separation in Planar Chromatography
230(34)
4.3.1 Planar electrochromatography on plates initially dry
231(2)
4.3.2 Planar electrochromatography on prewetted chromatographic plates
233(15)
4.3.3 Pressurized planar electrochromatography
248(16)
4.4 Two-Dimensional Separation with TLC and PEC/PPEC
264(2)
4.5 Orthogonal Simultaneous Chromatography and Electrophoresis
266(11)
4.5.1 Mobile phase driven by capillary action and/or hydrostatic pressure
266(3)
4.5.2 Mobile phase driven by external pressure
269(8)
4.6 Conclusions
277(1)
References
278(7)
Chapter 5 Layer dielectrochromatography—under external alternating current, LDEC 285(62)
5.1 Introduction
286(2)
5.2 Fundamentals of LDEC
288(23)
5.2.1 LDEC principles
288(1)
5.2.2 Dielectroosmotic flow
289(19)
5.2.3 Dielectrophoretic effect: Principle and theoretical considerations
308(2)
5.2.4 Comparison between DEOF and DEP
310(1)
5.3 Applications of LDEC
311(27)
5.3.1 Horizontal LDEC chamber
312(7)
5.3.2 Vertical LDEC chamber
319(11)
5.3.3 V-LDEC studies recently obtained on a new stationary phase with high dielectric constant
330(7)
5.3.4 Some future LDEC studies
337(1)
5.4 Conclusions
338(2)
References
340(7)
Chapter 6 Conventional and modern bioassays—detection, isolation, identification 347(50)
6.1 Introduction
347(2)
6.2 Principle and History of Planar Layer Chromatography—Biological Detection
349(4)
6.3 Classification and Comparison of Methods for Detection of Antimicrobials
353(4)
6.4 The Basic Elements of Direct Bioautography (DB)
357(6)
6.4.1 Conventional and forced-flow layer separation systems: Advantages of OPLC to TLC/HPTLC in DB
357(1)
6.4.2 Detection methods in DB
358(5)
6.5 Practice of DB
363(8)
6.5.1 Optimization of layer liquid systems
363(1)
6.5.2 Use of optimum conditions for test cell system
364(4)
6.5.3 Influencing factors in DB
368(3)
6.6 Applications of Planar Layer Chromatography-DB
371(15)
6.6.1 Test organisms for DB
371(1)
6.6.2 Detection of biologically active compounds with OPLC-DB
372(6)
6.6.3 Quantification of bioactive compounds using planar layer chromatography coupled with bioassay
378(3)
6.6.4 Bioassay-guided separation, detection, and isolation using DB
381(5)
6.7 Future Development and Application Potential of Planar Layer Chromatography-Bioassay
386(1)
References
387(10)
Chapter 7 BioArena system for studying key molecules as well as ingredients in biological samples 397(90)
7.1 Detailed Introductory Remarks
398(3)
7.2 Chemical-Biochemical-Biological Backgrounds of the BioArena Studies
401(35)
7.2.1 HCHO as a key molecule in the biological world
401(16)
7.2.2 Ozone (O3) as a determining molecule in the biological world
417(6)
7.2.3 Nitrative and oxidative stress reactions—antioxidants
423(5)
7.2.4 Extension of in vitro (BioArena) results to in vivo conditions: Greenhouse experiments
428(8)
7.3 Up-to-Date Main Achievements with BioArena System
436(34)
7.3.1 A chance observation and methodological developments to BioArena system
436(8)
7.3.2 Antibiotics in BioArena system—a new approach to their mechanism of action
444(6)
7.3.3 Study of antineoplastics in BioArena system
450(4)
7.3.4 Examination of mycotoxins in BioArena system
454(6)
7.3.5 RV as a key natural compound with multiple beneficial effects
460(2)
7.3.6 Trace elements and the biological world
462(3)
7.3.7 The use of results with in vitro (BioArena) studies in practice (in vivo conditions)—biochemical immunization of plants
465(5)
7.4 Conclusions
470(1)
References
471(16)
Chapter 8 Determining progress directions in layer liquid chromatography—Dreams and realities 487(16)
8.1 Short Introductory Remarks
488(1)
8.2 Instead of Capillary Forces, Forced-Flow of Eluent is Beneficial for Layer Liquid Systems
488(2)
8.3 Preparative Separation Possibility by Means of FFLC Techniques, and its Importance
490(1)
8.4 Multisystems—Big, Continuous Development Potential in OPLC
491(3)
8.4.1 Multilayer systems
492(1)
8.4.2 Multidimensional (MD) OPLC and other potential FFLC techniques
492(1)
8.4.3 Multichannel OPLC
493(1)
8.4.4 Integration of multichannel and multidetection systems
494(1)
8.5 Further Potentialities of Conventional and Modern Layer Liquid Chromatographic Techniques
494(1)
8.6 Biological Detection, Measurement, and Interactions—From Bioautography to the BioArena System
495(2)
8.6.1 Direct bioautography and its importance
495(1)
8.6.2 BioArena system and its latest results as well as its further potential
496(1)
References
497(6)
Index 503
Dr. Ern Tyihįks primary scientific achievements include the discovery of the formaldehyde cycle and formaldehydome system, the quadruple immune response of plants to pathogens, the unique role of endogenous formaldehyde and ozone in the antibiotic effect and the double effect of trace elements similar to trans-resveratrol. He was an early adopter of thin-layer chromatography methods and has been instrumental in moving the field forward, ultimately developing different patented versions of overpressured-layer chromatography, widely known as one of the most efficient separation techniques. Most recently he has invented the BioArena system, which integrates layer chromatographic separation with biological detection capabilities to explore in vivo phenomena such as the immunization of plants in greenhouse conditions. He holds PhD and DSc degrees from the Hungarian Academy of Sciences. He is Honorary Ass. Professor at the Semmelweis University, Budapest, Hungary, as well as Honorary Professor at the University of Szeged, Szeged, Hungary, and he was until recently a Scientific Advisor at the Plant Protection Institute, Hungarian Academy of Sciences Budapest, Hungary.