Atjaunināt sīkdatņu piekrišanu

E-grāmata: Forensic Investigation of Explosions

Edited by (Forensic Consultant, Vancouver, British Columbia, Canada)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 100,17 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Now in its second edition, Forensic Investigation of Explosions draws on the editors 30 years of explosives casework experience, including his work on task forces set up to investigate major explosives incidents. Dr. Alexander Beveridge provides a broad, multidisciplinary approach, assembling the contributions of internationally recognized experts who present the definitive reference work on the subject.

Topics discussed include:











The physics and chemistry of explosives and explosions The detection of hidden explosives The effect of explosions on structures and persons Aircraft sabotage investigations Explosion scene investigations Casework management The role of forensic scientists Analysis of explosives and their residues Forensic pathology as it relates to explosives Presentation of expert testimony

With nearly 40 percent more material, this new edition contains revised chapters and several new topics, including:











A profile of casework management in the UK Forensic Explosives Laboratory, one of the worlds top labs, with a discussion of their management system, training procedures, and practical approaches to problem solving Properties and analysis of improvised explosives An examination of the Bali bombings and the use of mobile analytical techniques and mobile laboratories The collection, analysis, and presentation of evidence in vehicle-borne improvised explosive device cases, as evidenced in attacks on US overseas targets

This volume offers valuable information to all members of prevention and post-blast teams. Each chapter was written by an expert or experts in a specific field and provides well-referenced information underlying best practices that can be used in the field, laboratory, conference room, classroom, or courtroom.

Recenzijas

"If there is a book for explosives investigations that I can recommend to anyone training in the field of explosives, then it is without a doubt Forensic Investigation of Explosions. The book not only accompanies the beginner through the history of explosives and explosives investigations, but serves as a great tool for seasoned investigators, scientists, and bomb technicians as the world of explosives investigations evolves." Melanie Brochu, B.Sc. RCMP Forensic Specialist (Explosives), Ottawa, Ontario If there is a book for explosives investigations that I can recommend to anyone training in the field of explosives, then it is without a doubt Forensic Investigation of Explosions. The book not only accompanies the beginner through the history of explosives and explosives investigations, but serves as a great tool for seasoned investigators, scientists, and bomb technicians as the world of explosives investigations evolves." Melanie Brochu, B.Sc. RCMP Forensic Specialist (Explosives), Ottawa, Ontario

List of Figures xi
Series Editor's Note xxvii
Preface xxix
Contributors xxxi
Editor xxxvii
1 The History, Development, and Characteristics of Explosives and Propellants 1(18)
Robert B. Hopler
1.1 Introduction
1(1)
1.2 Propellants
2(2)
1.2.1 Black Powder
2(1)
1.2.2 Smokeless Powder
3(1)
1.3 Military Explosives
4(3)
1.3.1 Picric Acid
4(1)
1.3.2 Trinitrotoluene
5(1)
1.3.3 Tetryl
5(1)
1.3.4 Pentaerythritol Tetranitrate
5(1)
1.3.5 Research Department Explosive and High Melting Explosive
6(1)
1.3.6 Plastic Explosives
6(1)
1.3.7 General Overview
7(1)
1.4 Commercial Explosives
7(8)
1.4.1 Nitroglycerin
8(1)
1.4.2 Dynamite
8(2)
1.4.3 Liquid Oxygen Explosives
10(1)
1.4.4 Ammonium Nitrate
10(1)
1.4.5 Ammonium Nitrate/Fuel Oil
11(1)
1.4.6 Slurry Explosives
12(1)
1.4.7 Emulsion Explosives
12(3)
1.5 Improvised or "Do-It-Yourself" Explosives
15(1)
1.6 Methods of Explosives Initiation
16(1)
1.7 Summary
17(1)
References
17(2)
2 Physics of Explosion Hazards 19(34)
Bibhu Mohanty
2.1 Introduction
19(1)
2.2 Historical Developments
20(1)
2.3 Thermochemistry of Explosives
21(2)
2.4 Types of Explosives
23(1)
2.5 Explosion Process
24(4)
2.5.1 Pressure of an Explosion
24(1)
2.5.2 Energy Release in Explosions
25(2)
2.5.2.1 Oxygen Balance
26(1)
2.5.3 Detonation Properties
27(1)
2.6 Characteristics of Blast Waves
28(10)
2.6.1 Reflection of Blast Waves
32(4)
2.6.2 Scaling and TNT equivalency
36(2)
2.6.2.1 Scaling
36(1)
2.6.2.2 TNT equivalency
37(1)
2.7 Types of Hazards
38(4)
2.7.1 Missile Impact on Concrete
41(1)
2.8 Interaction of Blast Wave with Structures
42(8)
2.8.1 Calculation of Blast Load
43(1)
2.8.2 Blast-Resistant Structures
44(2)
2.8.3 Hazards to Personnel
46(3)
2.8.4 Blast Protection
49(1)
2.9 Conclusion
50(2)
References
52(1)
3 Detection of Hidden Explosives New Challenges and Progress (1998-2009) 53(26)
Susan Hallowell
Richard Lareau
Ronald Krauss
Curtis Bell
Joshua Rubinstein
Polly Gongwer
Pamela Beresford
James C. Weatherall
3.1 Introduction
54(1)
3.2 Explosives Detection prior to 9/11
54(1)
3.3 Proliferation of Explosives Threats and Terrorism Attempts in the New Millenium
55(1)
3.4 The Detection Challenge
55(2)
3.5 The Importance of Basic Research and Technology Development
57(1)
3.6 Fundamentals of Explosives Detection
58(1)
3.7 Bulk Explosive Detection
58(8)
3.7.1 X-ray Systems
60(2)
3.7.2 Millimeter-Wave and Terahertz (THz)-based Technologies
62(3)
3.7.3 Raman Spectroscopy
65(1)
3.7.4 Summary
66(1)
3.8 Trace Explosives Detection
66(3)
3.8.1 Sampling of Trace Explosives
66(1)
3.8.2 Chemical Signatures
66(1)
3.8.3 Development and Deployment of Trace Detection Technology
67(1)
3.8.4 Colorometric Detection
67(1)
3.8.5 Ion Mobility Spectrometry and Mass Spectrometry
67(1)
3.8.6 Chemiluminescence and Polymer Sensor Detection
68(1)
3.8.7 "White Powder" Detection
68(1)
3.8.8 Advances
69(1)
3.9 Canines
69(2)
3.10 The Human Element
71(2)
3.11 The Systems Approach
73(1)
3.12 Conclusion
74(1)
References
74(3)
Recommended Reading
77(2)
4 General Protocols at the Scene of an Explosion 79(40)
Jean-Yves Vermette
4.1 Introduction
80(1)
4.2 Investigative Objectives
81(1)
4.2.1 Guidelines for Investigators
82(1)
4.3 Improvised Explosive Devices
82(5)
4.3.1 Classification of IEDs
83(1)
4.3.2 IED Components
83(1)
4.3.2.1 Explosive
83(1)
4.3.2.2 Energy Sources
83(1)
4.3.2.3 Initiators
84(1)
4.3.3 Principles of Operation
84(2)
4.3.3.1 Initiating System
84(2)
4.3.4 Container
86(1)
4.3.5 General
86(1)
4.3.6 Recovery of Intact Devices
86(1)
4.3.7 Device Deactivation
87(1)
4.4 The Scene of a Bomb Incident
87(1)
4.4.1 Immediate Aftermath
87(2)
4.4.1.1 Threats to Human Safety
87(1)
4.4.1.2 Obstacles to Crime Scene Protection
88(1)
4.4.1.3 People Problems
88(1)
4.5 Protocol for First Responders
88(1)
4.6 Objectives at the Post-Blast Scene
89(5)
4.6.1 Coordination and Control
90(4)
4.6.1.1 Information Exchange
91(1)
4.6.1.2 Personnel Deployment
91(1)
4.6.1.3 Experience by Conducting Test Explosions
91(3)
4.6.1.4 Equipment
94(1)
4.6.1.5 Creature Comforts
94(1)
4.6.1.6 Control Center Personnel and Facilities
94(1)
4.7 Contamination Issues
94(27)
4.7.1 Guidelines for Preventing Contamination of Exhibits
95(26)
4.7.1.1 Clothing
95(1)
4.7.1.2 Decontamination
95(24)
5 Recovery of Material from the Scene of an Explosion and Its Subsequent Forensic Laboratory Examination-A Team Approach 119(40)
Richard A. Strobel
5.1 Introduction
121(1)
5.2 The Team Approach to Investigation of the Scene of a Bombing
121(6)
5.2.1 Incident Response Planning
121(1)
5.2.2 Response Teams
122(1)
5.2.3 Field-Portable Explosives Detectors
123(1)
5.2.3.1 Case Study Examples
123(1)
5.2.4 The Explosives Detection Canine
124(1)
5.2.4.1 Case Study Example
124(1)
5.2.5 Daubert Hearing
124(1)
5.2.6 Initial Evaluation of the Incident
125(1)
5.2.6.1 Questions before Leaving for the Scene
125(1)
5.2.6.2 Questions about Possible Accidental Cause
125(1)
5.2.6.3 Questions on Site
126(1)
5.2.7 Hazards
126(1)
5.2.7.1 Chemical
126(1)
5.2.7.2 Biological
127(1)
5.2.7.3 Physical
127(1)
5.2.7.4 Secondary Devices
127(1)
5.3 Types of Response
127(3)
5.3.1 Live Explosive Devices-Implications of Render-Safe Procedures
127(1)
5.3.2 The Post-Blast Explosion Scene
128(2)
5.3.2.1 Initial Observations
128(1)
5.3.2.2 Identification of the Explosive through Damage Assessment
129(1)
5.3.2.3 Low Explosive Damage
130(1)
5.3.2.4 High Explosive Damage
130(1)
5.4 Contamination Issues
130(2)
5.4.1 Types of Contamination
131(1)
5.4.2 Contamination Mitigation
131(1)
5.4.2.1 Low Explosives
132(1)
5.5 Post-Blast Residue Collection
132(3)
5.5.1 Low Explosive Residues
133(1)
5.5.1.1 Collection
133(1)
5.5.2 High Explosive Residues
133(2)
5.5.2.1 Collection
134(1)
5.5.3 Preservation of Residues and Protection from Contamination
135(1)
5.6 Device Components
135(5)
5.6.1 Blast Diagnostics
135(1)
5.6.2 Pipe Bombs: Metal Fragmentation Diagnostics
136(2)
5.6.3 Thermal Effect on Other Witness Material
138(1)
5.6.4 Victim Activities
138(1)
5.6.4.1 Case Study Example
138(1)
5.6.5 Investigative Evidence
139(1)
5.6.6 Explosives
139(1)
5.6.7 Signatures
139(1)
5.6.8 Commercial Products
140(1)
5.6.9 Associative Evidence
140(1)
5.7 Clandestine Explosive Manufacturing-"Bomb Factories"
140(2)
5.7.1 Protocol for Taking Down a Clandestine Laboratory
141(1)
5.7.2 Clues at the Scene
141(1)
5.7.3 On-Site Instrumentation and Chemical Testing
141(1)
5.7.4 Literature
142(1)
5.8 The Role of the Forensic Scientist in the Laboratory-Team Approach
142(3)
5.8.1 Application of Forensic Laboratory Disciplines to Explosion Investigations
142(4)
5.8.1.1 Chemistry
142(1)
5.8.1.2 Tool Marks
143(1)
5.8.1.3 Metallurgy
143(1)
5.8.1.4 Document Examination
143(1)
5.8.1.5 Case Study Examples
143(1)
5.8.1.6 Latent Fingerprints
144(1)
5.8.1.7 DNA
144(1)
5.9 Device Reconstruction
145(1)
5.10 Cross Contamination of Evidence in the Forensic Laboratory-The Issue and the Precaution
145(1)
5.11 Initial Evaluation of the Evidence-Formation of the Forensic Team
146(1)
5.11.1 Establishing Priorities
146(1)
5.11.2 Investigative Evidence
146(1)
5.11.3 Associative Evidence
147(1)
5.12 Information Management-Integrating the Laboratory Information with the Field Investigation
147(2)
5.12.1 Laboratory Task Force
147(1)
5.12.2 Modes of Communication
147(1)
5.12.3 Search Warrant Planning-The Right People, Information, and Equipment
148(1)
5.12.4 Evidence Advisory-A Listing of All Associative, Circumstantial, and Direct Physical Evidence
148(1)
5.13 Systematic Analysis of Explosive Residues
149(3)
5.13.1 General Procedures to Be Used for Post-Blast Explosives Residue Identification
151(3)
5.13.1.1 Debris
151(1)
5.13.1.2 Particles
151(1)
5.14 Summary
152(1)
References
152(2)
Further Reading
154(1)
Appendix 1: ATF Explosion Investigation Guide
154(6)
Team Leader
154(1)
Photographer
154(1)
Evidence Technician
155(1)
Schematic Artist
155(1)
Immediate Area Investigative Unit
155(1)
Immediate Area Search Unit
156(1)
General Area Search Unit
156(1)
General Area Investigative Unit
157(2)
6 The Management of Casework within the United Kingdom Forensic Explosives Laboratory 159(38)
Sharon Broome
Clifford Todd
6.1 Introduction
160(1)
6.2 Tasking of FEL Staff within the UK
160(2)
6.2.1 Tasking of FEL Staff to International Incidents
162(1)
6.3 Specialist Examinations
162(2)
6.4 Attendance at Explosives Related Scenes
164(5)
6.4.1 Training
165(1)
6.4.2 Post-Explosion Scenes
166(1)
6.4.2.1 London Transportation System Bombings, July 7, 2005 (7/7)
167(1)
6.4.2.2 London Transportation System Attempted Bombings, July 21, 2005 (7/21)
167(1)
6.4.3 Finds of Chemicals and Explosives
167(1)
6.4.4 Evidence Collection
168(1)
6.5 Exhibits
169(3)
6.5.1 Packaging of Exhibits
169(1)
6.5.2 Unique identification of Exhibits
170(1)
6.5.3 Exhibit Labels
170(1)
6.5.4 Receipt of Items into the Laboratory
171(1)
6.5.5 Controlled Handling of Exhibits
171(1)
6.6 Joint Expert Examinations
172(1)
6.7 Analysis of Explosives at FEL
173(7)
6.7.1 Trace Residual Material
174(3)
6.7.2 Bulk Material
177(1)
6.7.3 Identification Criteria
178(2)
6.7.3.1 Residual Material
179(1)
6.7.3.2 Bulk Material
179(1)
6.8 Interpretation of Results
180(1)
6.8.1 Residual Material
180(1)
6.8.2 Bulk Material
181(1)
6.9 Device Reconstruction
181(4)
6.9.1 Examination and Analysis
182(1)
6.9.2 Reconstruction
182(3)
6.10 Expert Reports
185(4)
6.10.1 Reporting Results
185(1)
6.10.2 Statement/Report Format
186(2)
6.10.3 Reporting the Statement
188(1)
6.11 The Legal Framework
189(5)
6.11.1 Legislation Relating to the Criminal Misuse of Explosives
189(2)
6.11.2 Sub Judice and Disclosure
191(1)
6.11.3 Public Interest Immunity
192(1)
6.11.4 Interaction with the Defense Expert
193(1)
References
194(1)
Appendix
194(5)
Partial List of Abbreviations
194(3)
7 Aircraft Explosive Sabotage Investigation 197(106)
John H. Garstang
7.1 Introduction
199(4)
7.1.1 Threats
199(1)
7.1.2 Hostile Acts
200(1)
7.1.3 IED Attacks
201(1)
7.1.4 Specialist Post-Blast Expertise
202(1)
7.2 Conventions and Jurisdictions
203(1)
7.3 Aircraft Accident Investigation Organizations
203(1)
7.4 International Civil Aviation Organization
204(1)
7.5 Potential Conflicts with Accident Investigation Agencies
205(5)
7.5.1 Mandates
205(1)
7.5.2 Independent Investigations and Restrictions
206(1)
7.5.3 Protected Information
207(1)
7.5.4 Investigation Expertise
208(1)
7.5.5 Incompatible Procedures
209(1)
7.6 The Scene
210(2)
7.7 Electronic Office
212(1)
7.8 Case Management Software
213(1)
7.9 Geographic Information System.
213(2)
7.10 Positioning and Navigation
215(2)
7.10.1 Global Navigation Satellite System
215(1)
7.10.2 Inertial Navigation System, Ultra Short Base Line, and Long Base Line
216(1)
7.11 Remote Sensing
217(17)
7.11.1 Target Detection from an Airborne Platform
218(1)
7.11.2 Basics of Aerial Survey
219(1)
7.11.3 Orthophotographs and Orthophoto Maps
220(1)
7.11.4 Archives
221(1)
7.11.5 Rapid Aerial Imagery Acquisition and Processing of the Scene
222(2)
7.11.6 Unmanned Aerial Vehicles (UAVs)
224(1)
7.11.7 Close- Range Pho tog ram me try
225(2)
7.11.8 3D Visualization
227(1)
7.11.9 Light Detection and Ranging
228(4)
7.11.10 Synthetic Aperture Radar
232(2)
7.12 Underwater Search, Survey, and Salvage
234(14)
7.12.1 Underwater Optical Imaging
236(1)
7.12.2 Side-Scan Sonar
236(1)
7.12.3 Sector-Scanning Sonar
237(2)
7.12.4 Manned Diving: Divers and Manned Submersibles
239(2)
7.12.5 Unmanned Diving: Towed Systems
241(1)
7.12.6 Unmanned Diving: Hybrid Remote Operated Vehicles
241(1)
7.12.7 Unmanned Diving: Autonomous Underwater Vehicles
242(2)
7.12.8 Unmanned Diving: Remote Operated Vehicles
244(4)
7.13 Flight Recorders
248(6)
7.13.1 Recovery of Flight Recorders
248(1)
7.13.2 Cockpit Voice Recorder
249(2)
7.13.3 Flight Data Recorder
251(2)
7.13.4 Flight Recorder Playback Facilities
253(1)
7.14 Trajectory Analysis of Wreckage
254(2)
7.15 Post-Blast Structural Damage Assessment
256(5)
7.15.1 Close-Range Brisance and the "Shock-Hole" Effect
257(1)
7.15.2 Fuselage Skin Tensile Rivet Failure, Crack Initiation, and Longitudinal Fractures
257(4)
7.15.3 Petaled Hole 259
7.15.4 Staining, High-Velocity Fragment Holes, Gas Wash, and Microcraters at Rupture Site 260
7.16 Reconstruction
261(6)
7.16.1 Physical Reconstruction
262(1)
7.16.2 Computer Reconstruction
263(4)
7.17 Documents
267(2)
7.18 Summary
269(1)
Acknowledgments
270(1)
Appendices
271(17)
Appendix A: MANPADS
271(1)
Appendix B: Relevant ICAO Publications
272(1)
Manual of Aircraft Accident and Incident Investigation (ICAO Document 9756)
272(1)
Hazards at Aircraft Occurrence Sites (ICAO Circular 315)
272(1)
Manual of Civil Aviation Medicine (ICAO Document 8973)
272(1)
Annex 17: Security-Safeguarding International Civil Aviation against Acts of Unlawful Interference
273(1)
Security Manual for Safeguarding Civil Aviation against Acts of Unlawful Interference (ICAO Document 8973)
273(1)
Appendix C: GIS Services and Preexisting GIS Files
273(1)
Appendix D: Global Positioning Systems
274(1)
Appendix E: Deriving 3D Measurements and Models from Aerial Imagery
274(1)
Appendix F: High-Resolution Satellite Imagery
275(1)
Appendix G: Pictometry Oblique Imagery
275(1)
Appendix H: Use of Off-the-Shelf Cameras
276(1)
Appendix I: PhotoModeler' Scanner Automated Stereo Image Matching
276(1)
Appendix J: Unconventional Single-Frame Image Analysis
277(1)
Appendix K: Visualization Tools
278(1)
Appendix L: LiDAR Bathymetry
279(1)
Appendix M: LiDAR Target Detection below Vegetation Canopies
280(1)
Appendix N: Terrapoint Titan° Mobile LiDAR
280(1)
Appendix O: SAR Fuel & Oil Slick Detection
281(1)
Appendix P: Underwater Search, Survey, and Salvage References for Aircraft Investigations
282(1)
Appendix Q: Underwater 3D Optical Imaging
283(1)
Appendix R: Basics of Sonar and Side-Scan Technology
283(2)
Appendix S: SAIC FOCUS 1500 Remotely Operated Towed Vehicle
285(1)
Appendix T: Underwater Locator Beacons and Portable Homing Kits
286(1)
Appendix U: U.S. Navy Deep-Water Towed Pinger Locator System
287(1)
References
288(15)
8 Evidence of Explosive Damage Materials and Structures in Air Crash Investigations 303(46)
Maurice Baker
John Winn
Steve Harris
Nigel Harrison
8.1 Introduction
304(2)
8.1.1 Historical Background
304(1)
8.1.2 Investigation Team
305(1)
8.1.3 Scope of This
Chapter
306(1)
8.1.3.1 Materials
306(1)
8.1.3.2 Structures
306(1)
8.1.3.3 Case Studies
306(1)
8.2 Explosive Effects on Materials
306(2)
8.2.1 Obvious Signs
306(1)
8.2.2 Effects of Fragmentation
307(1)
8.2.3 Microstructural Indications in Metals
308(1)
8.3 Laboratory Techniques
308(4)
8.3.1 Handling of Recovered Items
308(1)
8.3.2 Initial Examination
309(1)
8.3.3 Scanning Electron Microscopy
309(1)
8.3.4 Electron Probe Microanalysis
310(1)
8.3.5 Other Useful Techniques
311(1)
8.3.6 Dedicated Trials Capabilities
311(1)
8.4 Positive Explosive Evidence on Metals
312(6)
8.4.1 The Explosive Signature
312(1)
8.4.2 Fragments
312(1)
8.4.3 Rolled Edges
313(1)
8.4.4 Gas Wash
314(1)
8.4.5 Impact Craters
314(3)
8.4.6 Explosive Cladding
317(1)
8.4.7 Quantitative Microanalysis
317(1)
8.5 Positive Explosive Evidence on Fabrics
318(5)
8.5.1 Explosive Flash Melting
318(1)
8.5.2 Globularizing of Fibers
319(3)
8.5.3 Interpenetration of Fabrics
322(1)
8.6 Microstructural Indications in Metals
323(2)
8.6.1 Indicators as Supporting Evidence
323(1)
8.6.2 Mechanical Twinning
323(1)
8.6.3 Adiabatic Shear
324(1)
8.6.4 Microrecrystallization
324(1)
8.6.5 Grain Deformation
324(1)
8.7 Environmental Considerations
325(3)
8.7.1 Corrosion Damage
325(2)
8.7.2 Wreckage Recovered from Sea Water
327(1)
8.8 Explosive Effects on Aircraft Structures
328(6)
8.8.1 Structural Break-Up
328(1)
8.8.2 Wreckage Trail Analysis
329(1)
8.8.3 Explosive Loading
329(2)
8.8.4 Aircraft Reconstruction
331(3)
8.9 Case Studies
334(13)
8.9.1 Air Lanka Tristar, Sri Lanka, 1986
334(1)
8.9.2 Convair 580, Denmark, 1989
334(3)
8.9.3 Lockheed Hercules, Angola, 1989, 1991
337(6)
8.9.4 Pan Am Flight PA103, Boeing 747, Lockerbie, Scotland, 1988
343(4)
References
347(2)
9 Investigation of Gas Phase Explosions in Buildings 349(56)
Christopher D. Foster
9.1 Introduction
350(1)
9.1.1 Detonation
350(1)
9.1.2 Deflagration
350(1)
9.1.3 Hydraulic/Pneumatic Failure of Pressurized Containers
351(1)
9.2 Some Important Properties of Combustible Gases, Vapors, and Dusts in Admixture with Air
351(6)
9.2.1 Flammability Limits
351(1)
9.2.2 Stoichiometric Mixtures
352(1)
9.2.3 Factors Influencing the Accumulation and Dispersion of Gas Leaking into a Compartment
352(4)
9.2.3.1 Gas Density
353(1)
9.2.3.2 Conditions of Leakage
353(1)
9.2.3.3 Gas Leak Rate
353(1)
9.2.3.4 Ventilation
354(1)
9.2.3.5 Gas Build-Up and Dispersion Modeling
355(1)
9.2.4 Flame Speed and Burning Velocity
356(1)
9.3 Pressure Development
357(13)
9.3.1 The Effect of a Pressure Pulse on a Building Structure and Its Elements
360(4)
9.3.1.1 Window Glazing
361(2)
9.3.1.2 Brick Walls
363(1)
9.3.2 Remote Damage Caused by Blast Waves
364(6)
9.4 Scene Investigation
370(10)
9.4.1 Preliminary Investigation
371(1)
9.4.2 Systematic and More Detailed Examination
372(9)
9.4.2.1 Identifying the Origin of the Explosion
373(1)
9.4.2.2 Nature of the Fuel
373(1)
9.4.2.3 Identifying the Fuel
374(3)
9.4.2.4 Fire Associated with an Explosion
377(1)
9.4.2.5 Source of the Leak
378(1)
9.4.2.6 Source of Ignition
379(1)
9.5 Final Stage of the Investigation
380(1)
9.6 Case Studies
381(20)
9.6.1 Case 1
381(7)
9.6.1.1 Scene Examination
383(3)
9.6.1.2 Analysis
386(1)
9.6.1.3 Maximum Pressure
387(1)
9.6.2 Case 2
388(6)
9.6.2.1 Scene Examination
389(3)
9.6.2.2 Analysis
392(2)
9.6.3 Case 3
394(15)
9.6.3.1 Background Details
395(1)
9.6.3.2 Scene Examination
396(4)
9.6.3.3 Analysis
400(1)
References
401(4)
10 Vehicle-Borne Improvised Explosive Devices: Collection, Analysis, and Presentation of Evidence 405(24)
Donald J. Sachtleben
10.1 Introduction
406(1)
10.2 Definition of a VBIED
406(1)
10.3 A Brief History of VBIED Attacks in the United States
406(3)
10.4 The Use of VBIEDs against United States Interests Abroad
409(1)
10.4.1 Case Study: African Embassy Bombings
409(1)
10.5 Essential Elements of a VBIED
410(1)
10.5.1 The KENBOM VBIED
411(1)
10.6 Detonation of a VBIED
411(3)
10.6.1 The KENBOM Scene
412(2)
10.7 Initial Response to a VBIED Attack
414(4)
10.7.1 Conduct an Overall Survey
415(1)
10.7.2 Establish a Perimeter and Create a Command Post
415(1)
10.7.3 Ensure Crime Scene Safety
416(1)
10.7.4 Gather Resources
416(1)
10.7.5 Processing the KENBOM Scene
417(1)
10.8 Creating and Tasking Teams at a VBIED Scene
418(2)
10.8.1 General Evidence Collection Team
418(1)
10.8.2 Vehicle Identification Team
419(1)
10.8.3 Administrative/Logistics Team
419(1)
10.8.4 Hazardous Environment Team
419(1)
10.8.5 Forensic Triage Team
419(1)
10.8.6 Application of Teams in the KENBOM Investigation
420(1)
10.9 Collecting Evidence at a VBIED Scene
420(2)
10.9.1 Follow a Logical Process
420(1)
10.9.2 Use Standardized Documentation
421(1)
10.9.3 Focus on High-Priority Items
421(1)
10.9.4 Address Interim Storage Requirements
421(1)
10.9.5 Employ Proper Packaging Protocols
421(1)
10.9.6 Collection of Evidence at the KENBOM Scene
421(1)
10.10 Coordinating with External Investigation
422(1)
10.10.1 Coordination at the KENBOM Scene
423(1)
10.11 Forensic Examination of VBIED Exhibits
423(3)
10.11.1 Transition from Crime Scene to Laboratory
423(1)
10.11.2 Laboratory Examination Process
424(1)
10.11.3 Exhibit Examination Procedures in the FBI Laboratory
424(1)
10.11.4 Forensic Reports
425(1)
10.11.5 KENBOM Forensic Examination
425(1)
10.12 Jurisdiction in VBIED Attacks
426(1)
10.12.1 Federal versus State
426(1)
10.12.2 Extraterritorial
426(1)
10.12.3 KENBOM Jurisdiction
427(1)
10.13 Judicial Process in VBIED Prosecutions
427(1)
10.13.1 KENBOM Trial
427(1)
10.14 Conclusion
428(1)
References
428(1)
11 Investigation of Pipe Bombs 429(64)
Edward C. Bender
Alexander D. Beveridge
11.1 Introduction
431(1)
11.2 Evidence from Pipes
432(3)
11.2.1 Pipe Classification and Identification
432(1)
11.2.2 Pipe Fragmentation
433(2)
11.2.3 Tool Marks on Pipes
435(1)
11.3 Biological Evidence on Pipe Bombs
435(2)
11.3.1 Fingerprints
435(1)
11.3.2 DNA Analysis
436(1)
11.3.3 Laboratory Search and Recovery Procedures for Biological Trace Evidence
436(1)
11.4 Pipe Bomb Initiation
437(3)
11.4.1 Flame
437(1)
11.4.2 Hot Wire
437(1)
11.4.3 Blasting Caps
438(1)
11.4.4 Electrical Components
438(1)
11.4.4.1 Batteries
438(1)
11.4.4.2 Timers and Switches
439(1)
11.4.5 Adhesives and Adhesive Tapes
439(2)
11.4.5.1 Literature
439(1)
11.5 Test Explosions of Pipe Bombs
440(1)
11.6 Low Explosives
441(7)
11.6.1 Visual and Microscopic Examination
442(1)
11.6.2 Separation of Components
442(1)
11.6.3 Analytical Techniques
442(6)
11.6.3.1 Infrared Spectroscopy
442(2)
11.6.3.2 Raman Spectroscopy
444(1)
11.6.3.3 Elemental Analysis by Scanning Electron Microscope/Energy Dispersive X-ray Spectroscopy
444(1)
11.6.3.4 X-ray Powder Diffraction
444(1)
11.6.3.5 High-Performance Liquid Chromatography
445(1)
11.6.3.6 Gas Chromatography
445(1)
11.6.3.7 Spot Tests
445(1)
11.6.3.8 Ion Chromatography
445(1)
11.6.3.9 Capillary Electrophoresis
446(1)
11.6.3.10 Thin Layer Chromatography
447(1)
11.6.3.11 Mass Spectrometry
447(1)
11.6.3.12 Combined Techniques
447(1)
11.7 Analysis of Low Explosives and Their Post-Blast Residues
448(2)
11.7.1 Crime Scene
448(1)
11.7.2 Analytical Protocols
448(1)
11.7.2.1 Recovery of Post-Blast Residue
448(1)
11.7.3 Preferred Analytical Methods for Specific Explosives
449(1)
11.8 Black Powder
450(4)
11.8.1 Physical Appearance
450(1)
11.8.2 Analytical Identification of Black Powder
450(2)
11.8.3 Black Powder Residue
452(2)
11.8.3.1 Black Powder with Sodium Nitrate Oxidizer
453(1)
11.9 Black Powder Substitutes
454(9)
11.9.1 Pyrodex
455(5)
11.9.1.1 Appearance
455(1)
11.9.1.2 Analysis
455(2)
11.9.1.3 Post-Blast Residue
457(3)
11.9.2 Triple Seven
460(1)
11.9.2.1 Appearance
460(1)
11.9.2.2 Analysis
460(1)
11.9.3 Black Powder Substitutes Containing Ascorbic Acid (Vitamin C)
460(3)
11.9.3.1 Ascorbic Acid Identification
461(1)
11.9.3.2 Literature (2000-2010)
461(2)
11.9.3.3 Summary
463(1)
11.10 Smokeless Powder
463(9)
11.10.1 Bulk Sporting Powders
463(1)
11.10.1.1 Appearance and Composition
464(1)
11.10.1.2 Extraction and Analysis
464(1)
11.10.2 Single Base and Double Base Smokeless Powders
464(2)
11.10.2.1 Additives
464(1)
11.10.2.2 Appearance
464(2)
11.10.3 Analysis of Smokeless Powders
466(5)
11.10.3.1 Nitrocellulose
467(1)
11.10.3.2 Nitroglycerin
467(1)
11.10.3.3 Additives
467(4)
11.10.3.4 Summary
471(1)
11.10.4 Post-Blast Examination of Smokeless Powder
471(1)
11.10.4.1 Contamination and Interpretation
471(1)
11.11 Flash Powder
472(1)
11.11.1 Composition
472(1)
11.11.2 Analysis of Flash Powder
472(1)
11.12 Improvised Low Explosives Derived from Commercial Products
473(3)
11.12.1 Road Safety Flares
474(1)
11.12.1.1 Composition and Analysis
474(1)
11.12.2 Chlorates
474
11.12.2.1 Chlorate–Sugar Mixtures
474(1)
11.12.2.2 Damage and Residue
474
Investigation of Pipe Bombs
431(44)
11.12.3 Match Heads
475(1)
11.12.4 Fireworks
476(1)
11.12.5 Calcium Hypochlorite
476(1)
11.13 Improvised Low Explosives from Chemical Mixtures
476(4)
11.13.1 Examination and Analysis
476(2)
11.13.1.1 Test Explosion Examples
477(1)
11.13.2 Chemical Reaction Bombs
478(1)
11.13.2.1 Hydrochloric Acid and Aluminum
479(1)
11.13.2.2 Sodium Hydroxide and Aluminum
479(1)
11.13.2.3 Dry Ice
479(1)
11.13.3 Significance and Environmental Studies
479(17)
11.13.3.1 Environmental Control Samples
479(1)
11.13.3.2 Environmental Studies
480(1)
11.14 High Explosives
480(1)
Acknowledgments
481(1)
References
481(6)
Appendix: Analytical Conditions
487(6)
12 Improvised Explosives Characteristics, Detection, and Analysis 493(46)
Kirk Yeager
12.1 Introduction
494(2)
12.2 Use of Improvised Explosives
496(1)
12.3 Chemistry of Improvised Explosives
496(4)
12.3.1 Blending and Cooking
497(1)
12.3.2 IE Identification Aids for Oxidizers and Fuels
497(3)
12.4 Overview of Improvised Explosives Characteristics
500(1)
12.5 Fertilizer-Based Improvised Explosives
500(6)
12.5.1 Ammonium Nitrate
500(4)
12.5.1.1 Explosive Characteristics and Illegal Usage
500(1)
12.5.1.2 Safety
501(2)
12.5.1.3 Post-Blast Residue
503(1)
12.5.2 Urea Nitrate
504(2)
12.5.2.1 Explosive Characteristics and Illegal Usage
504(2)
12.5.2.2 Safety
506(1)
12.5.2.3 Post-Blast Residue
506(1)
12.6 Pyrotechnic-Based IEs
506(9)
12.6.1 Chlorates and Perchlorates
506(6)
12.6.1.1 Explosive Characteristics and Illegal Usage
507(1)
12.6.1.2 Safety
508(4)
12.6.1.3 Post-Blast Residue
512(1)
12.6.2 Permanganates
512(2)
12.6.2.1 Explosive Characteristics and Illegal Usage
512(1)
12.6.2.2 Safety
513(1)
12.6.2.3 Post-Blast Residue
513(1)
12.6.3 Nitrate Salts
514(1)
12.6.3.1 Explosive Characteristics and Illegal Usage
514(1)
12.6.3.2 Safety
514(1)
12.6.3.3 Post-Blast Residue
514(1)
12.7 Peroxide-Based IEs
515(8)
12.7.1 Acetone Peroxides
515(5)
12.7.1.1 Explosive Characteristics and Illegal Usage
515(1)
12.7.1.2 Safety
516(1)
12.7.1.3 Post-Blast Residue
517(3)
12.7.2 Hexamethylene Triperoxide Diamine
520(2)
12.7.2.1 Explosive Characteristics and Illegal Usage
520(1)
12.7.2.2 Safety
521(1)
12.7.2.3 Post-Blast Residue
521(1)
12.7.3 Other Peroxide-Based Explosives
522(1)
12.7.3.1 Explosive Characteristics and Illegal Usage
522(1)
12.7.3.2 Safety
523(1)
12.7.3.3 Post-Blast Residue
523(1)
12.8 Field Analysis of IEs
523(4)
12.8.1 The Clandestine Laboratory
523(4)
12.8.1.1 Thermal Susceptibility Test
524(1)
12.8.1.2 Narcotics Test Kits
525(1)
12.8.1.3 Spot Tests
525(1)
12.8.1.4 Field Instrumentation
526(1)
12.9 Collection of IE Samples
527(1)
12.9.1 Trace Sample Collection
527(1)
12.9.2 Bulk Sample Collection
527(1)
12.10 Forensic Laboratory Analysis of IEs
528(4)
12.10.1 Segregation and Exam Plans
528(1)
12.10.2 Chemical Examinations
528(2)
12.10.3 Trace Residue and Bulk Sample Examinations
530(1)
12.10.4 Unknown Chemicals
530(10)
12.10.4.1 White Powders
530(1)
12.10.4.2 Colored Powders
531(1)
12.10.4.3 Liquids
532(1)
12.11 Conclusion
532(2)
References
534(5)
13 Quality and the Trace Detection and Identification of Organic High Explosives 539(46)
Sean Doyle
13.1 Introduction
540(3)
13.1.1 Quality
542(1)
13.1.2 Technology
542(1)
13.2 Issues and Principles
543(4)
13.2.1 Confidence in Identification
543(2)
13.2.1.1 Comparison
544(1)
13.2.1.2 Corroboration
544(1)
13.2.2 Avoidance of Contamination
545(1)
13.2.3 Quality Management Systems and Regulation
545(2)
13.3 Specific Aspects of Quality Control
547(6)
13.3.1 Standard Reference Materials and Traceability
547(1)
13.3.1.1 Destruction of Reference Standards
548(1)
13.3.2 Sampling Kits
548(2)
13.3.3 Sample Preparation-Clean-Up and Preconcentration
550(3)
13.3.3.1 Thin Layer Chromatography (Preparative)
550(1)
13.3.3.2 Solid Phase Extraction (Column Chromatography: Solid Adsorbents)
551(1)
13.3.3.3 Quality Control Aspects
552(1)
13.4 Analytical Techniques for Identification of Organic High Explosives
553(13)
13.4.1 Thin Layer Chromatography
554(4)
13.4.1.1 TLC of Peroxides
554(1)
13.4.1.2 Eluent Systems-Conventional Explosives
554(1)
13.4.1.3 Visualization: The Griess Reaction
555(1)
13.4.1.4 Eluent Systems: Peroxides
556(1)
13.4.1.5 Visualization
556(1)
13.4.1.6 Quality Issues
556(2)
13.4.2 Gas Chromatography with Chemiluminescence Detection
558(4)
13.4.2.1 Quality Issues
558(4)
13.4.3 Gas Chromatography/Mass Spectrometry
562(1)
13.4.4 Liquid Chromatography/Mass Spectrometry, Including Tandem MS
562(4)
13.4.4.1 Peroxides
563(1)
13.4.4.2 Identification
564(1)
13.4.4.3 Summary of the Method
565(1)
13.4.4.4 LC/MS/MS of HMTD
565(1)
13.4.4.5 LC/MS/MS of TATP
565(1)
13.5 Competence of the Individual
566(2)
13.5.1 Training
566(1)
13.5.2 Proficiency Testing
567(1)
13.6 Contamination Control
568(5)
13.6.1 Introduction
568(1)
13.6.2 Sources of Explosives Contamination
568(1)
13.6.3 Contamination Control Measures
568(4)
13.6.3.1 Segregation of Activities and Control over the Movement of Personnel
569(1)
13.6.3.2 Shoes
570(1)
13.6.3.3 Clothing
570(1)
13.6.3.4 Hands
570(1)
13.6.3.5 Movement of Materials and Equipment
570(1)
13.6.3.6 Cleaning
570(1)
13.6.3.7 Separation of Activities in Time
571(1)
13.6.3.8 Disposable Minor Apparatus
571(1)
13.6.3.9 Major Apparatus
571(1)
13.6.3.10 Standard Solutions
571(1)
13.6.4 Quality Assurance
572(4)
13.6.4.1 Sample Quality Assurance
572(1)
13.6.4.2 Laboratory Quality Assurance
572(1)
13.7 Future Developments
573(1)
References
574(2)
Appendix 1
576(6)
1 Scope
576(1)
2 Essential Knowledge
576(1)
3 Precautions before Entry of Personnel
576(1)
4 Safety
577(1)
5 Entry/Exit Procedure
577(3)
5.1 S12 Trace Suite
577(1)
5.2 H16 Trace Vehicle Bay
578(1)
5.3 S18 Trace Laboratory
579(1)
6 Normal Entry of Materials
580(1)
7 Entry of Noncase Materials that May Be Contaminated
580(1)
8 Entry of Casework Items
581(1)
9 Work within the Trace Areas
581(1)
Appendix 2
582(1)
Appendix 3
582(1)
Appendix 4
583(2)
14 Chromatography of Explosives 585(36)
Bruce R. McCord
Inge Corbin
Edward C. Bender
14.1 Introduction
586(1)
14.2 Extraction
587(4)
14.2.1 Solvent Extraction
588(1)
14.2.2 Thermal Desorption
588(1)
14.2.3 Solid Phase Extraction
588(2)
14.2.4 Extraction Summary
590(1)
14.3 Gas Chromatography
591(6)
14.3.1 Injection Systems
591(2)
14.3.1.1 Split-Splitless Injectors
591(1)
14.3.1.2 On-Column Injectors
591(2)
14.3.2 Columns
593(1)
14.3.3 Detectors
594(3)
14.3.3.1 Chemiluminescence
594(1)
14.3.3.2 Mass Spectrometry
595(1)
14.3.3.3 Electron Capture Detectors
595(1)
14.3.3.4 Flame Ionization Detectors
595(2)
14.4 High-Performance Liquid Chromatography
597(4)
14.4.1 Injectors
597(1)
14.4.2 Solvents
597(1)
14.4.3 Columns
598(1)
14.4.4 Detectors
598(2)
14.4.4.1 Ultraviolet
599(1)
14.4.4.2 Mass Spectrometry
599(1)
14.4.4.3 Electrochemical
599(1)
14.4.5 Application of High-Pressure Liquid Chromatography to Smokeless Powders
600(1)
14.5 Thin Layer Chromatography
601(2)
14.5.1 The Thin Layer Process
601(1)
14.5.2 Solvent Systems
602(1)
14.5.3 Visualization
602(1)
14.5.4 Clean-Up
602(1)
14.6 Size Exclusion Chromatography
603(1)
14.6.1 Columns and Separation
603(1)
14.6.2 Applications
603(1)
14.7 Ion Chromatography
604(4)
14.7.1 Anion Analysis by Ion Chromatography
605(2)
14.7.2 Cation Analysis by Ion Chromatography
607(1)
14.7.3 Confirmation of Identity
607(1)
14.8 Capillary Electrophoresis
608(6)
14.8.1 Ion Analysis by Capillary Electrophoresis
610(1)
14.8.2 Capillary Electrophoresis of Organic Explosives: Micellar Electrokinetic Chromatography
611(11)
14.8.2.1 Organic Gunshot Residue Analysis
612(2)
14.8.2.2 Analysis of Explosives in Soils
614(1)
14.9 Microfluidic and Microscale Chromatographic Devices
614(1)
14.10 Conclusions
615(1)
References
615(6)
15 Analysis of Explosives by Mass Spectrometry 621(50)
Tsippy Tamiri
Shmuel Zitrin
15.1 Introduction
622(5)
15.1.1 Ionization
622(2)
15.1.1.1 Electron Ionization
622(1)
15.1.1.2 Chemical Ionization
623(1)
15.1.1.3 Atmospheric Pressure Ionization
623(1)
15.1.2 The Mass Spectrum
624(1)
15.1.3 Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry
625(2)
15.1.4 Mass Spectrometry/Mass Spectrometry
627(1)
15.2 Explosives Containing Nitro Groups
627(19)
15.2.1 Nitroaromatic Explosives
627(9)
15.2.1.1 Electron Ionization
627(2)
15.2.1.2 Negative-Ion EI/MS
629(1)
15.2.1.3 Positive-Ion CI/MS
629(1)
15.2.1.4 Negative-Ion CI/MS
630(1)
15.2.1.5 Atmospheric Pressure Ionization: Electrospray Ionization
630(1)
15.2.1.6 Atmospheric Pressure Chemical Ionization
631(5)
15.2.2 Nitrate Esters
636(3)
15.2.2.1 Electron Ionization
636(1)
15.2.2.2 Positive-Ion CI/MS
636(1)
15.2.2.3 Negative-Ion CI(NCI)
637(1)
15.2.2.4 Atmospheric Pressure Ionization: Electrospray Ionization
637(1)
15.2.2.5 Atmospheric Pressure Chemical Ionization
638(1)
15.2.3 Nitramines
639(7)
15.2.3.1 RDX and HMX
639(5)
15.2.3.2 Decomposition Products of RDX and HMX
644(1)
15.2.3.3 Other Cyclic Nitramines
644(1)
15.2.3.4 Tetryl
645(1)
15.3 Peroxides
646(2)
15.3.1 EI and CI
646(2)
15.3.2 Atmospheric Pressure Ionization: Electrospray Ionization
648(1)
15.3.3 Atmospheric Pressure Chemical Ionization
648(1)
15.3.4 Conformers of TATP
648(1)
15.4 Some Special Mass Spectrometric Methods in the Analysis of Explosives
648(4)
15.5 Inorganic Ions
652(3)
15.6 Urea Nitrate
655(1)
15.7 Mass Spectrometry in Post-Explosion Analysis
655(3)
15.7.1 Hydrolysis of Polynitrate Esters
656(1)
15.7.2 Post-Explosion Analysis of TATP
657(1)
References
658(13)
16 Analysis of Explosives by Infrared Spectrometry 671(20)
Shmuel Zitrin
Tsippy Tamiri
16.1 Introduction
671(1)
16.2 Basic Features of Infrared Spectrometry
671(2)
16.3 Criteria for Identification
673(1)
16.4 Infrared of Explosives and Related Compounds
674(13)
16.4.1 Explosives Containing Nitro Groups
674(4)
16.4.1.1 Nitroaromatic Compounds
674(1)
16.4.1.2 Nitrate Esters
674(4)
16.4.1.3 Nitramines
678(1)
16.4.1.4 Other
678(1)
16.4.2 Urea Nitrate
678(2)
16.4.3 Organic Peroxides
680(1)
16.4.4 Inorganic Explosives
681(6)
16.4.5 Nonexplosive Additives
687(1)
Acknowledgment
687(1)
References
687(4)
17 Portable Explosive Detection Instruments 691(34)
Sarah Benson
Naomi Speers
Vincent Otieno-Alego
17.1 Introduction
692(1)
17.2 Portable Explosive Detection Instruments
693(1)
17.3 Overview of Portable Instruments for Explosives Detection and Analysis
694(5)
17.3.1 Ion Mobility Spectrometry
695(1)
17.3.2 Gas Chromatography
695(2)
17.3.2.1 Gas Chromatography Coupled with a Chemiluminescent Detector
696(1)
17.3.2.2 Gas Chromatography Coupled with a Mass Spectrometer
696(1)
17.3.2.3 Gas Chromatography Coupled with Surface Acoustic Wave Sensors
697(1)
17.3.3 Ion Chromatography
697(1)
17.3.4 FTIR and Raman Spectroscopy
698(1)
17.4 Selection of Portable Instruments
699(2)
17.4.1 Type of Explosives to Be Detected by the Instrument
699(1)
17.4.2 Degree of Portability
699(1)
17.4.3 Working Environment
700(1)
17.4.4 Ease of Use
700(1)
17.4.5 System Speed (Throughput Rate)
700(1)
17.4.6 Instrument's Performance Parameters
700(1)
17.4.7 System Cost
700(1)
17.4.8 Other Factors
700(1)
17.5 Using Portable Instruments in the Field
701(5)
17.5.1 Preparing to Deploy
701(1)
17.5.2 Location
701(3)
17.5.3 Contamination Prevention
704(1)
17.5.4 Sample Analysis
704(1)
17.5.5 Reporting Preliminary Results
705(1)
17.6 Case Studies
706(5)
17.6.1 Post-Blast Examinations
706(2)
17.6.1.1 First Bali Bombings
706(1)
17.6.1.2 Australian Embassy Bombing
706(1)
17.6.1.3 Second Bali Bombings
707(1)
17.6.1.4 Investigation
707(1)
17.6.1.5 Summary
708(1)
17.6.2 Suspected Explosive Materials
708(3)
17.6.2.1 Case 1
709(1)
17.6.2.2 Case 2
709(1)
17.6.2.3 Investigation
709(2)
17.7 Link to Central Laboratory
711(2)
17.7.1 Key Considerations
712(1)
17.7.2 Potential Issues
713(1)
17.8 Portable Instrumentation Limitations
713(1)
17.9 Development of Mobile Instrumentation
714(3)
17.9.1 Chromatography
714(1)
17.9.2 Electrophoresis
714(1)
17.9.3 Spectroscopy
715(1)
17.9.3.1 Surface-Enhanced Raman Scattering
715(1)
17.9.3.2 Laser-Induced Breakdown Spectroscopy
715(1)
17.9.4 Ion Mobility and Mass Spectrometry
715(1)
17.9.4.1 Ion Mobility Spectrometry
715(1)
17.9.4.2 High-Field Asymmetric Waveform Ion Mobility Spectrometry
716(1)
17.9.4.3 Mass Spectrometry
716(1)
17.9.5 Electrochemical Sensing
716(1)
17.9.6 Other Analytical Techniques
717(1)
17.10 Future Directions
717(1)
17.10.1 Lab-on-a-Chip
717(1)
17.10.2 Nanotechnology
718(1)
17.11 Summary
718(1)
Glossary
718(1)
References
719(6)
18 The Significance of Analytical Results in Explosives Investigation 725(16)
Gerard T. Murray
18.1 Introduction
725(1)
18.2 Types of Explosives Encountered in Terrorist Bombings
726(1)
18.2.1 Commercial/Military Explosives
726(1)
18.2.2 Improvised/Homemade Explosives
727(1)
18.3 Recovery and Processing of Residues
727(7)
18.3.1 Recovery of Post-Blast Residues
728(1)
18.3.2 Recovery of Residues from a Person Suspected of Handling Explosives
728(1)
18.3.2.1 Hand Swabbing Kit
729(1)
18.3.3 Precautions to Prevent Cross-Contamination in Handling in the Field
729(1)
18.3.4 Precautions to Prevent Cross-Contamination in Handling in the Laboratory
730(4)
18.3.4.1 Analytical Protocols
730(4)
18.4 Interpretation and Significance of Results
734(4)
18.4.1 Pertinent Factors Influencing Interpretation and Significance
734(4)
18.4.1.1 Are Explosives' Residues Present?
734(1)
18.4.1.2 What Are These Materials and Where Do They Occur?
735(1)
18.4.1.3 What Are the Background Levels?
736(1)
18.4.1.4 Environmental Samples
737(1)
18.4.1.5 How Much Is Present?
737(1)
18.4.1.6 How Could Material Be Present Where It Was Found?
738(1)
18.4.2 Evaluation
738(1)
18.5 Summary
738(1)
References
739(1)
Further Reading
739(2)
19 Forensic Pathology of Explosive Injury 741(16)
Indira Kitulwatte
Michael S. Pollanen
19.1 Introduction
741(1)
19.2 Pathology of Explosive Injury
742(7)
19.2.1 Explosion-Related Injuries
742(1)
19.2.2 Body Disintegration, Fragmentation, and Mutilating Injury
743(2)
19.2.3 Burns from Radiant Heat
745(1)
19.2.4 Dirt and Dust Tattooing
746(1)
19.2.5 Peppering or "Body Stippling"
746(1)
19.2.6 Penetrating and Perforating Shrapnel Injuries
746(2)
19.2.7 Internal Blast Injuries
748(1)
19.2.8 Fat Embolism
749(1)
19.3 Medicolegal Issues at Autopsy
749(3)
19.3.1 Identification and Minimum Number of Individuals
749(1)
19.3.2 Radiologic Examination
750(1)
19.3.3 Collection of Physical Exhibits
750(1)
19.3.4 Documentation of Injuries
751(1)
19.3.5 Disease and Toxicologic Considerations
751(1)
19.3.6 Position and Range of Explosion
751(1)
19.3.7 Cause of Death
751(1)
19.4 Emerging Issues in Explosive Injury
752(2)
19.4.1 The Medical Frontier of Explosive Injury
752(1)
19.4.2 Improvised Explosive Devices
753(1)
19.4.3 Design of Protective Garments
753(1)
19.4.4 Traumatic "Blast" Brain Injury
753(1)
Acknowledgments
754(1)
References
754(3)
20 Presentation of Explosive Casework Evidence 757(22)
James W. Jardine
20.1 Introduction
758(6)
20.1.1 Legal Context
759(1)
20.1.2 Factual Context
760(1)
20.1.3 The Component Parts of the Bomb
761(1)
20.1.4 Explosion
761(1)
20.1.5 Search and Seizure
762(1)
20.1.6 Post-Mortem Examinations
763(1)
20.1.7 Exhibit Selection and Seizure for Court in Canada
763(1)
20.2 Forensic Expert Evidence
764(4)
20.2.1 Selection of Experts
764(1)
20.2.1.1 Qualifications
765(1)
20.2.2 Exhibit Selection
765(1)
20.2.3 Exhibit Continuity, Encoding Identification Marks, and Labeling
766(1)
20.2.4 Written Forensic Reports
766(2)
20.3 Witness Preparation
768(3)
20.3.1 Qualifications
768(1)
20.3.2 Expertise (Fields of Expertise)
769(1)
20.3.3 Consolidation
769(1)
20.3.4 Informing the Witness
769(1)
20.3.5 Cross-Examination of the Witness
770(1)
20.3.6 Demeanor
770(1)
20.3.7 Preparation by the Witness
770(1)
20.3.8 Preparation by Counsel
771(1)
20.4 Testimony
771(3)
20.4.1 Evidence-in-Chief
771(2)
20.4.1.1 Outline
771(1)
20.4.1.2 Witness Notes
772(1)
20.4.2 Cross-Examination
773(1)
20.4.3 Re-examination
773(1)
20.5 Conclusion
774(1)
References
774(1)
Appendix
775(4)
Beveridge Evidence Outline
775(1)
List of Exhibits
775(1)
Explosive Residues/Barium/Sulphur/Barium Sulphate/EGDN/NG
775(1)
Test Explosions
775(1)
Photographs and Video Tapes
775(1)
Involvement with Japanese Police and Scientists in the Narita Airport Explosion Investigation
775(2)
Analyses
776(1)
Overall Conclusions/Source of Explosion
777(2)
Index 779
Dr. Alexander (Sandy) Beveridge is a consultant forensic chemist and lawyer in Vancouver, Canada. He is a fellow of the Chemical Institute of Canada and had a 30-year career in the Forensic Science Service of the Royal Canadian Mounted Police, where he headed the chemistry section in the Vancouver laboratory for many years. Sandy conducts courses and workshops on forensic investigation of explosions from practical, scientific, and legal perspectives for investigators and at academic institutions.