Atjaunināt sīkdatņu piekrišanu

E-grāmata: Formation Testing: Pressure Transient and Contamination Analysis

  • Formāts: EPUB+DRM
  • Izdošanas datums: 14-Feb-2014
  • Izdevniecība: Wiley-Scrivener
  • Valoda: eng
  • ISBN-13: 9781118831144
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 214,08 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 14-Feb-2014
  • Izdevniecība: Wiley-Scrivener
  • Valoda: eng
  • ISBN-13: 9781118831144
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The only book available for the reservoir or petroleum engineer covering formation testingwith algorithms for wireline and LWD reservoir analysis developed for transient pressure, contamination modeling, permeability, and pore pressure prediction.

Traditional well logging methods, such as resistivity, acoustic, nuclear, and NMR, provide indirect information relating to fluid and formation properties. However, the "formation tester" offered in wireline and MWD/LWD operations is different. It collects actual downhole fluid samples for surface analysis, and through pressure transient analysis, provides direct measurements for pore pressure, mobility, permeability, and anisotropy. These are vital to real-time drilling safety, geosteering, hydraulic fracturing, and economic analysis.

Methods for formation testing analysis, while commercially important and accounting for a substantial part of service company profits, are shrouded in secrecy. Many are poorly constructed, and because details are not available, industry researchers are not able to improve on them. Formation Testing explains conventional models and develops new, more powerful algorithms for early-time analysis. More importantly, it addresses a critical area in sampling related to "time required to pump clean samples," using rigorous multiphase flow techniques. All of the methods are explained in complete detail. Equations are offered for users to incorporate in their own models, but, for those needing immediate answers, convenient, easy-to-use software is available.

The lead author is a well-known petrophysicist with hands-on experience at Schlumberger, Halliburton, BP Exploration, and other companies. His work is used commercially at major oil service companies, and important extensions to his formation testing models have been supported by prestigious grants from the U.S. Department of Energy. His latest collaboration with China National Offshore Oil Corporation marks an important turning point, where advanced simulation models and hardware are evolving side-by-side, defining a new generation of formation testing logging instruments. Providing more than formulations and solutions, this book offers a close look at "behind the scenes" formation tester development, as the China National Offshore Oil Corporation opens up its research, engineering, and manufacturing facilities through a collection of never-before-seen photographs, showing how formation testing tools are developed from start to finish.
Opening Message xix
Preface xxi
Acknowledgements xxvii
Part I Modern Ideas in Job Planning and Execution
1 Basic Ideas, Challenges and Developments
1(33)
1.1 Background and introduction
1(5)
1.2 Existing models, implicit assumptions and limitations
6(9)
1.2.1 Exponential tight zone approximation
7(1)
1.2.2 Permeability and anisotropy from steady-state dual-probe data
8(1)
1.2.3 Three-probe, vertical well interpretation method
9(1)
1.2.4 Gas pumping
10(1)
1.2.5 Material balance method
10(2)
1.2.6 Conventional three-dimensional numerical models
12(1)
1.2.7 Uniform flux dual packer models
13(2)
1.3 Tool development, testing and deployment -- role of modeling and "behind the scenes" at CNOOC/COSL
15(14)
1.3.1 Engineering analysis, design challenges, solutions
15(1)
1.3.2 From physics to math to engineering -- inverse problem formulation
15(1)
1.3.2.1 Simplified theoretical model
16(1)
1.3.2.2 More detailed finite element model
17(1)
1.3.3 Design chronicle -- people, places and things
18(7)
1.3.4 Bohai Bay activities
25(3)
1.3.5 Middle East operations
28(1)
1.4 Book objectives and presentation plan
29(3)
1.5 References
32(2)
2 Forward Pressure and Contamination Analysis in Single and Multiphase Compressible Flow
34(22)
2.1 Single-phase source flow models
34(6)
2.1.1 Qualitative effects of storage and skin
37(3)
2.2 Dual packer and dual probe flows
40(5)
2.2.1 A detailed calculation
41(4)
2.3 Supercharging, mudcake growth and pressure interpretation
45(3)
2.3.1 Supercharge numerical simulation
46(1)
2.3.2 Industry perspectives on "buildup versus drawdown,"
46(2)
2.4 Boundary and azimuthal effects in horizontal wells
48(1)
2.5 Contamination clean-up at the source probe
49(2)
2.6 Sampling-while-drilling tools and clean-up efficiency
51(4)
2.6.1 What happens with very short invasion times
51(1)
2.6.2 What happens with longer invasion times
52(3)
2.7 References
55(1)
3 Inverse Methods for Permeability, Anisotropy and Formation Boundary Effects Assuming Liquids
56(22)
3.1 New inverse methods summary
56(1)
3.2 New inverse modeling capabilities
57(5)
3.2.1 Module FT-00
58(2)
3.2.2 Module FT-01
60(1)
3.2.3 Module FT-03
60(1)
3.2.4 Module FT-PTA-DDBU
61(1)
3.3 Inverse examples -- dip angle, multivalued solutions and skin
62(8)
3.3.1 Forward model, Module FT-00
62(2)
3.3.2 Inverse model, Module FT-01 -- multivalued solutions
64(1)
3.3.3 Effects of dip angle -- detailed calculations
65(3)
3.3.4 Inverse "pulse interaction" approach for low permeability zones
68(2)
3.4 Computational notes on complex complementary error function evaluation
70(2)
3.5 Source model -- analytical and physical limitations
72(1)
3.6 Full three-dimensional transient Darcy flow model for horizontal wells
72(3)
3.7 Phase delay inverse method and electromagnetic analogy
75(1)
3.8 Source model applications to dual packers
76(1)
3.9 Closing remarks
76(1)
3.10 References
77(1)
Part II Math Models, Results and Detailed Examples
4 Multiphase Flow and Contamination -- Transient Immiscible and Miscible Modeling with Fluid Compressibility
78(43)
4.1 Invasion, supercharging and multiphase pumping
79(7)
4.1.1 Invasion and pumping description
79(3)
4.1.2 Job planning considerations
82(1)
4.1.3 Mathematical modeling challenges
83(1)
4.1.4 Simulation objectives
84(1)
4.1.5 Math modeling overview
85(1)
4.2 Mathematical formulation and numerical solution
86(10)
4.2.1 Immiscible flow equations
86(2)
4.2.1.1 Finite differences, explicit versus implicit
88(1)
4.2.1.2 Formation tester "ADI" implementation
89(1)
4.2.1.3 Mudcake growth, formation coupling, supercharging
90(3)
4.2.1.4 Pumpout model for single-probe pad nozzles
93(1)
4.2.1.5 Dual-probe and dual packer surface logic
94(2)
4.3 Miscible flow formulation
96(1)
4.3.1 Miscible flow numerical solution
97(1)
4.4 Three-dimensional flow extensions
97(1)
4.5 Computational implementation for azimuthal effects
98(1)
4.6 Modeling long-time invasion and mudcake scrape-off
99(1)
4.7 Software features
99(1)
4.8 Calculated miscible flow pressures and concentrations
100(16)
4.8.1 Example
1. Single probe, infinite anisotropic media
101(6)
4.8.2 Example
2. Single probe, three layer medium
107(1)
4.8.3 Example
3. Dual probe pumping, three layer medium
108(2)
4.8.4 Example
4. Straddle packer pumping
110(2)
4.8.5 Example
5. Formation fluid viscosity imaging
112(1)
4.8.6 Example
6. Contamination modeling
113(1)
4.8.7 Example
7. Multi-rate pumping simulation
113(1)
4.8.8 Example
8. More detailed clean-up application
114(2)
4.9 Calculated immiscible flow clean-up examples
116(2)
4.9.1 Example
9. Higher permeability anisotropic formation
116(1)
4.9.2 Example
10. Pressure transient modeled
117(1)
4.10 Closing remarks
118(1)
4.11 References
119(2)
5 Exact Pressure Transient Analysis for Liquids in Anisotropic Homogeneous Media, Including Flowline Storage Effects, With and Without Skin at Arbitrary Dip Angles
121(75)
5.1 Background and objectives
122(8)
5.1.1 Detailed literature review and history
122(1)
5.1.2 Recent 1990s developments
123(2)
5.1.3 Modeling background and basics
125(2)
5.1.4 New developments
127(3)
5.2 Detailed pressure transient examples (twenty!) --competing effects of nisotropy, skin, dip and flowline storage
130(16)
5.3 Software operational details and user interface
146(10)
5.4 Closing remarks
156(3)
5.5 Appendix -- Mathematical model and numerical implementation
159(37)
5.5.1 Isotropic spherical flow with storage and no skin
159(1)
5.5.1.1 Physical and mathematical formulation
160(1)
5.5.1.2 General dimensionless representation
160(1)
5.5.1.3 Exact solution using Laplace transforms
161(1)
5.5.1.4 Constant rate drawdown and buildup
162(1)
5.5.1.5 Practical implications
163(1)
5.5.1.6 Surface plot of exact solution
164(1)
5.5.1.7 Early time series solution
165(1)
5.5.1.8 Large time asymptotic solution
165(1)
5.5.1.9 Arbitrary volume flowrate
166(2)
5.5.2 Anisotropic ellipsoidal flow with storage and no skin
168(1)
5.5.2.1 Defining effective permeability
168(1)
5.5.2.2 Complete physical and mathematical formulation
168(1)
5.5.2.3 Simplifying the differential equation
169(1)
5.5.2.4 Total velocity through ellipsoidal surfaces
170(2)
5.5.2.5 Pressure formulation
172(1)
5.5.2.6 Volume flowrate formulation
172(3)
5.5.3 Isotropic spherical flow with storage and skin
175(1)
5.5.3.1 Mathematical model of skin from first principles
176(1)
5.5.3.2 Skin extensions to "storage only" pressure model
176(2)
5.5.3.3 Exact pressure transient solutions via Laplace transforms
178(1)
5.5.3.4 Explicit and exact time domain solutions
179(1)
5.5.3.5 More general pressure results away from the source probe
179(1)
5.5.4 Anisotropic ellipsoidal flow with storage and skin
180(1)
5.5.4.1 Skin model in multi-dimensional anisotropic flow
180(1)
5.5.4.2 Implicit assumptions related to formation permeability
181(2)
5.5.4.3 General boundary value problem formulation
183(1)
5.5.5 Numerical issues and algorithm refinements
184(1)
5.5.5.1 Complex complementary error function
184(3)
5.5.5.2 Real function methods for FTWD analysis
187(3)
5.5.5.3 Skin model and mathematical anomalies
190(1)
5.5.5.4 Multi-rate drawdown schedules
191(3)
5.5.6 References
194(2)
6 Permeability Interpretation for Liquids in Anisotropic Media, Including Flowline Storage Effects, With and Without Skin at Arbitrary Dip Angles
196(78)
6.1 Six new inverse methods summarized
196(2)
6.2 Existing inverse methods and limitations
198(3)
6.3 Permeability anisotropy theory without skin (ellipsoidal source)
201(8)
6.3.1 Steady pressure drop formulas at arbitrary dip
201(1)
6.3.2 Isotropic permeability prediction
202(1)
6.3.3 Anisotropic media, vertical wells, zero dip angle
202(1)
6.3.4 Anisotropic media with arbitrary dip angle
203(2)
6.3.5 Nearly vertical wells, small dip angle approximation
205(1)
6.3.6 Horizontal wells, large dip angle approximation
205(1)
6.3.7 General dip angle, Kh equation, exact algebraic solution
205(1)
6.3.8 General dip angles, Kv/Kh equation
206(1)
6.3.9 Dip angle and algebraic structure
207(1)
6.3.10 Azimuthally and generally offset probes
207(1)
6.3.11 Complementary early time analysis
208(1)
6.4 Zero skin permeability prediction examples (ellipsoidal source)
209(8)
6.5 Permeability anisotropy with skin effects (ellipsoidal source)
217(2)
6.5.1 Exact steady-state pressure and skin solutions
217(1)
6.5.2 Exact early time pressure and skin relationship
218(1)
6.5.3 Numerical algorithm for non-zero skin problems
219(1)
6.6 Non-zero skin permeability prediction examples (ellipsoidal source)
219(6)
6.7 Low permeability pulse interference testing (ellipsoidal source) -- getting results with short test times
225(13)
6.7.1 Faster pressure testing in the field
226(1)
6.7.2 Non-zero skin permeability prediction examples
227(5)
6.7.3 Pulse interaction method for single-probe tools
232(1)
6.7.4 Dual-probe pulse interaction methods
232(1)
6.7.5 Zero skin permeability prediction examples
232(6)
6.8 Fully three-dimensional inverse methods
238(7)
6.9 Software interface for steady inverse methods (ellipsoidal source)
245(6)
6.9.1 Pumping modes and error checking
245(2)
6.9.2 Zero-skin and non-zero skin modes
247(1)
6.9.3 Zero-skin mode
247(2)
6.9.4 Non-zero skin model
249(2)
6.10 Formation testing while drilling (FTWD)
251(20)
6.10.1 Pressure transient drawdown-buildup approach
251(1)
6.10.2 Interpretation in low mobility, high flowline storage environments
251(2)
6.10.3 Multiple pretests, modeling and interpretation
253(4)
6.10.4 Reverse flow injection processes
257(1)
6.10.4.1 Conventional fluid withdrawal, drawdown-then-buildup
257(4)
6.10.4.2 Reverse flow injection process, buildup-then-drawdown
261(5)
6.10.5 Best practices - data acquisition and processing
266(5)
6.11 Closing remarks
271(2)
6.12 References
273(1)
7 Three-Dimensional Pads and Dual Packers on Real Tools with Flowline Storage in Layered Anisotropic Media for Horizontal Well Single-Phase Liquid and Gas Flows
274(63)
7.1 Pad and dual pad models for horizontal well application
274(6)
7.1.1 Practical modeling applications
276(3)
7.1.2 Prior pressure transient models
279(1)
7.1.3 Specific research and software objectives
279(1)
7.2 Fundamental ideas in finite difference modeling
280(6)
7.2.1 Finite differencing in space and time
281(1)
7.2.2 Explicit schemes
281(1)
7.2.3 Implicit procedures
282(1)
7.2.4 Tridiagonal matrixes
283(1)
7.2.5 Grid generation, modern ideas and methods
283(2)
7.2.6 Detailed math modeling objectives
285(1)
7.3 Mathematical formulation and geometric transformations
286(17)
7.3.1 Pressure partial differential equations
286(1)
7.3.1.1 Geometric domain transformations
286(2)
7.3.1.2 Alternating-direction-implicit method
288(5)
7.3.2 Velocity and volume flow rate boundary conditions
293(1)
7.3.2.1 General velocity transforms
293(1)
7.3.2.2 Zero flow at solid borehole surfaces
294(1)
7.3.2.3 Zero flow at horizontal barriers
294(1)
7.3.2.4 Pad-nozzle boundary conditions
295(1)
7.3.2.5 Straddle packer or dual packer source boundary conditions
296(2)
7.3.2.6 Dual-probe pad boundary conditions
298(1)
7.3.3 Numerical curvilinear grid generation
299(1)
7.3.3.1 Fundamental grid generation ideas
299(3)
7.3.3.2 Fast and stable iterative solutions
302(1)
7.4 Meshing algorithm construction details
303(3)
7.5 Three-dimensional calculations and validations
306(24)
7.5.1 Suite
1. Circular well validations
306(3)
7.5.2 Suite
2. Modeling zero radial flow at sealed borehole surface
309(2)
7.5.3 Suite
3. Modeling real pumpouts (high permeability)
311(4)
7.5.4 Suite
4. Modeling real pumpouts (low permeability)
315(3)
7.5.5 Suite
5. Modeling real pumpouts (low permeability and flowline storage)
318(2)
7.5.6 Suite
6. Modeling real pumpouts (variable flow rates)
320(2)
7.5.7 Suite
7. Modeling anisotropy with azimuthally displaced sources
322(5)
7.5.8 Suite
8. Modeling anisotropy with diametrically opposed probes
327(2)
7.5.9 Suite
9. Reservoir engineering production forecasting
329(1)
7.5.10 Suite
10. Straddle packer flow modeling
329(1)
7.6 User interface and extended capabilities
330(5)
7.6.1 Extended simulation capabilities
332(3)
7.7 Closing remarks
335(1)
7.8 References
336(1)
8 Gas Pumping: Forward and Inverse Methods in Anisotropic Media at Arbitrary Dip Angles for Point Source, Straddle Packer and Real Nozzles
337(48)
8.1 Gas reservoir pumping basics and modeling objectives
338(2)
8.1.1 Single-phase sampling
338(1)
8.1.2 Pad nozzle versus dual packer usage
338(1)
8.1.3 General transient flowrate pumping
339(1)
8.2 Direct and inverse formulations for ellipsoidal source
340(3)
8.2.1 Governing gas flow equations
340(2)
8.2.2 Similarity transform
342(1)
8.3 Ellipsoidal source - exact steady forward and inverse solutions
343(4)
8.3.1 Exact, steady, forward formulation
343(1)
8.3.2 Exact, steady, forward solution at source and observation points
344(2)
8.3.3 Exact, steady, inverse formulation and solutions
346(1)
8.4 Special analytical results
347(2)
8.4.1 Liquid flow, check limit
347(1)
8.4.2 Isothermal gas expansion, all dip angles
347(1)
8.4.3 Vertical wells, all "m" (thermodynamic) values
348(1)
8.4.4 Horizontal wells, all "m" (thermodynamic) values
348(1)
8.5 Direct solver, solution procedure
349(1)
8.6 Forward model gas calculations
350(3)
8.7 Second-order schemes
353(1)
8.8 Inverse solver, solution software
353(2)
8.9 Inverse gas calculations
355(3)
8.10 Ellipsoidal source -- fully transient numerical solutions for gases and liquids
358(11)
8.10.1 Transient flow modeling
359(1)
8.10.2 Finite difference equation
360(1)
8.10.3 Boundary conditions -- modeling flowline storage with and without skin effects
361(1)
8.10.4 Detailed time integration scheme
362(1)
8.10.5 Observation probe response
362(1)
8.10.6 Software interface and example calculations
363(5)
8.10.7 Source formulation limitations
368(1)
8.11 Transient source pulse interaction inverse method
369(3)
8.11.1 Pulse interaction, procedure at nonzero dip angle
369(3)
8.12 Ring source, layered model for vertical wells
372(9)
8.12.1 Source model limitations and refinement
372(1)
8.12.2 Finite difference method
372(1)
8.12.3 Alternating-direction-implicit integration
373(2)
8.12.4 Formation tester nozzle as a simple ring source
375(1)
8.12.5 Pad nozzle pumpout boundary condition
376(1)
8.12.6 Dual probe and dual packer surface logic
377(1)
8.12.7 Detailed boundary condition implementation
377(1)
8.12.8 Example calculations
378(3)
8.13 Pad nozzle and dual packer sources for horizontal wells
381(2)
8.14 Application to modern gas reservoir characterization
383(1)
8.15 References
383(2)
9 Three-Dimensional Phase Delay Response in Layered Anisotropic Media with Dip
385(22)
9.1 Basic phase delay and amplitude attenuation ideas
385(2)
9.1.1 Isotropic uniform media
385(1)
9.1.2 Anisotropic homogeneous media
386(1)
9.2 Layered model formulation
387(5)
9.2.1 Homogeneous medium, basic mathematical ideas
387(2)
9.2.2 Boundary value problem for complex pressure
389(1)
9.2.3 Iterative numerical solution to general formulation
389(1)
9.2.4 Successive line over relaxation procedure
390(1)
9.2.5 Advantages of the scheme
391(1)
9.2.6 Extensions to multiple layers
391(1)
9.2.7 Extensions to complete formation heterogeneity
392(1)
9.3 Phase delay software interface
392(4)
9.3.1 Output file notes
394(1)
9.3.2 Special user features
395(1)
9.4 Detailed phase delay results in layered anisotropic media
396(8)
9.5 Closing remarks - extensions and additional applications
404(2)
9.5.1 Inverse model in uniform anisotropic media
404(1)
9.5.2 Inverse model in layered media
404(1)
9.5.3 Variable gridding
405(1)
9.5.4 Other physical models
405(1)
9.6 References
406(1)
Part III Consulting Services and Advanced Software
Consulting services and advanced software
407(19)
Module FT-00
408(2)
Module FT-01
410(2)
Module FT-02
412(2)
Module FT-03
414(4)
Module FT-04
418(2)
Module FT-05
420(1)
Module FT-06
421(2)
Module FT-07
423(2)
Module FT-PTA-DDBU
425(1)
Part IV Cumulative References, Index and Author Contact
Cumulative References 426(5)
Index 431(8)
About the Authors 439
Wilson C. Chin, who earned his PhD from MIT and MSc from Caltech, heads StrataMagnetic Software, LLC in Houston, which develops mathematical modeling software for formation testing, MWD telemetry, borehole electromagnetics, well logging, reservoir engineering, and managed pressure drilling. He is the author of ten books, more than 100 papers, and over forty patents.

Yanmin Zhou received her PhD in geological resources engineering from the University of Petroleum, Beijing, and serves as Geophysics Engineer at the China National Offshore Oil Corporation.

Yongren Feng is Chief Mechanical Engineer at the China National Offshore Oil Corporation with three decades of design experience covering a dozen logging tools. With more than 100 patents, he serves as Project Leader for the 12th National Five Year Plan in formation tester development, and he was elected as one of Chinas National Technology and Innovation Leaders.

Qiang Yu earned his MSc in measurement technology and instrumentation from Xian Shiyou University and serves as Senior Control Engineer in formation testing and field operations. He is an Associate Project Leader in the national formation testing program with the China National Offshore Oil Corporation.

Lixin Zhao earned his PhD from the University of Petroleum, Beijing, and serves as Senior Petrophysical Scientist, with three decades of logging and formation evaluation experience.