|
|
1 | (4) |
|
1.1 Visual Brains Versus Analytic Brains |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.3 What Makes Mathematics Difficult? |
|
|
2 | (1) |
|
1.4 Does Mathematics Exist Outside Our Brains? |
|
|
3 | (1) |
|
|
3 | (2) |
|
|
5 | (30) |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (2) |
|
2.5.1 The Arithmetic of Positive and Negative Numbers |
|
|
9 | (1) |
|
2.6 Observations and Axioms |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
11 | (1) |
|
2.7 The Base of a Number System |
|
|
11 | (8) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
2.7.4 Hexadecimal Numbers |
|
|
13 | (4) |
|
2.7.5 Adding Binary Numbers |
|
|
17 | (1) |
|
2.7.6 Subtracting Binary Numbers |
|
|
18 | (1) |
|
|
19 | (6) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
2.8.6 Algebraic and Transcendental Numbers |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
2.8.9 Quaternions and Octonions |
|
|
23 | (1) |
|
2.8.10 Transcendental and Algebraic Numbers |
|
|
24 | (1) |
|
|
25 | (5) |
|
2.9.1 The Fundamental Theorem of Arithmetic |
|
|
26 | (1) |
|
|
27 | (1) |
|
2.9.3 Prime Number Distribution |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
30 | (1) |
|
|
31 | (2) |
|
2.11.1 Algebraic Expansion |
|
|
31 | (1) |
|
2.11.2 Binary Subtraction |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
33 | (2) |
|
|
35 | (20) |
|
|
35 | (1) |
|
|
35 | (1) |
|
|
36 | (5) |
|
3.3.1 Solving the Roots of a Quadratic Equation |
|
|
38 | (3) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
42 | (2) |
|
|
44 | (1) |
|
|
44 | (6) |
|
3.7.1 Explicit and Implicit Equations |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
46 | (1) |
|
3.7.4 Function Domains and Ranges |
|
|
47 | (1) |
|
3.7.5 Odd and Even Functions |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
50 | (5) |
|
3.8.1 Algebraic Manipulation |
|
|
50 | (1) |
|
3.8.2 Solving a Quadratic Equation |
|
|
51 | (2) |
|
|
53 | (2) |
|
|
55 | (24) |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
56 | (1) |
|
4.3.1 Logical Connectives |
|
|
56 | (1) |
|
|
57 | (13) |
|
4.4.1 Material Equivalence |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
4.4.5 Inclusive Disjunction |
|
|
59 | (1) |
|
4.4.6 Exclusive Disjunction |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
4.4.16 Implication and Equivalence |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
4.4.19 Reductio Ad Absurdum |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
69 | (1) |
|
|
70 | (6) |
|
|
71 | (1) |
|
4.5.2 Membership and Cardinality of a Set |
|
|
71 | (1) |
|
4.5.3 Subsets, Supersets and the Universal Set |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
74 | (1) |
|
4.5.7 Relative Complement |
|
|
74 | (1) |
|
4.5.8 Absolute Complement |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
76 | (3) |
|
|
76 | (1) |
|
|
76 | (2) |
|
|
78 | (1) |
|
|
78 | (1) |
|
|
79 | (10) |
|
|
79 | (1) |
|
|
79 | (3) |
|
5.3 Permutations of Multisets |
|
|
82 | (1) |
|
|
83 | (2) |
|
|
85 | (4) |
|
5.5.1 Eight-Permutations of a Multiset |
|
|
85 | (1) |
|
5.5.2 Eight-Permutations of a Multiset |
|
|
86 | (1) |
|
5.5.3 Number of Permutations |
|
|
87 | (1) |
|
5.5.4 Number of Five-Card Hands |
|
|
87 | (1) |
|
5.5.5 Hand Shakes with 100 People |
|
|
87 | (1) |
|
5.5.6 Permutations of MISSISSIPPI |
|
|
88 | (1) |
|
|
89 | (12) |
|
|
89 | (1) |
|
6.2 Definition and Notation |
|
|
89 | (6) |
|
|
91 | (1) |
|
|
91 | (1) |
|
6.2.3 Mutually Exclusive Events |
|
|
92 | (1) |
|
|
93 | (1) |
|
6.2.5 Probability Using Combinations |
|
|
93 | (2) |
|
|
95 | (6) |
|
6.3.1 Product of Probabilities |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
97 | (1) |
|
6.3.8 Selecting Four Aces in Succession |
|
|
97 | (1) |
|
|
97 | (1) |
|
6.3.10 Selecting Four Balls from a Bag |
|
|
98 | (1) |
|
|
98 | (1) |
|
6.3.12 Dealing Five Cards |
|
|
99 | (2) |
|
|
101 | (18) |
|
|
101 | (1) |
|
|
101 | (1) |
|
|
102 | (1) |
|
|
102 | (1) |
|
|
103 | (1) |
|
7.6 Arithmetic Operations |
|
|
103 | (7) |
|
|
104 | (1) |
|
|
105 | (1) |
|
7.6.3 Multiplying by a Constant |
|
|
105 | (1) |
|
|
106 | (1) |
|
7.6.5 Multiplicative Inverse |
|
|
106 | (2) |
|
|
108 | (1) |
|
7.6.7 Fermat's Little Theorem |
|
|
109 | (1) |
|
7.7 Applications of Modular Arithmetic |
|
|
110 | (5) |
|
|
110 | (3) |
|
|
113 | (2) |
|
|
115 | (3) |
|
|
115 | (1) |
|
|
115 | (1) |
|
7.8.3 Remainders of Products |
|
|
116 | (1) |
|
7.8.4 Multiplicative Inverse |
|
|
116 | (1) |
|
7.8.5 Product Table for Modulo 13 |
|
|
117 | (1) |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
119 | (14) |
|
|
119 | (1) |
|
|
119 | (1) |
|
8.3 Units of Angular Measurement |
|
|
119 | (1) |
|
8.4 The Trigonometric Ratios |
|
|
120 | (3) |
|
|
123 | (1) |
|
8.5 Inverse Trigonometric Ratios |
|
|
123 | (2) |
|
8.6 Trigonometric Identities |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
126 | (1) |
|
8.9 Compound-Angle Identities |
|
|
127 | (3) |
|
8.9.1 Double-Angle Identities |
|
|
128 | (1) |
|
8.9.2 Multiple-Angle Identities |
|
|
129 | (1) |
|
8.9.3 Half-Angle Identities |
|
|
130 | (1) |
|
8.10 Perimeter Relationships |
|
|
130 | (3) |
|
|
133 | (14) |
|
|
133 | (1) |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
134 | (1) |
|
|
135 | (2) |
|
|
135 | (1) |
|
|
136 | (1) |
|
9.6 Theorem of Pythagoras in 2D |
|
|
137 | (1) |
|
9.7 3D Cartesian Coordinates |
|
|
137 | (2) |
|
9.7.1 Theorem of Pythagoras in 3D |
|
|
138 | (1) |
|
|
139 | (1) |
|
9.9 Spherical Polar Coordinates |
|
|
139 | (1) |
|
9.10 Cylindrical Coordinates |
|
|
140 | (1) |
|
9.11 Barycentric Coordinates |
|
|
141 | (1) |
|
9.12 Homogeneous Coordinates |
|
|
142 | (1) |
|
|
142 | (3) |
|
|
142 | (1) |
|
9.13.2 Distance Between Two Points |
|
|
143 | (1) |
|
|
143 | (1) |
|
9.13.4 Spherical Polar Coordinates |
|
|
144 | (1) |
|
9.13.5 Cylindrical Coordinates |
|
|
144 | (1) |
|
9.13.6 Barycentric Coordinates |
|
|
145 | (1) |
|
|
145 | (2) |
|
|
147 | (18) |
|
|
147 | (1) |
|
|
147 | (1) |
|
10.3 Linear Equations with Two Variables |
|
|
148 | (4) |
|
10.4 Linear Equations with Three Variables |
|
|
152 | (7) |
|
|
158 | (1) |
|
10.5 Mathematical Notation |
|
|
159 | (3) |
|
|
159 | (1) |
|
10.5.2 Order of a Determinant |
|
|
159 | (1) |
|
10.5.3 Value of a Determinant |
|
|
159 | (2) |
|
10.5.4 Properties of Determinants |
|
|
161 | (1) |
|
|
162 | (3) |
|
10.6.1 Determinant Expansion |
|
|
162 | (1) |
|
10.6.2 Complex Determinant |
|
|
162 | (1) |
|
|
163 | (1) |
|
10.6.4 Simultaneous Equations |
|
|
163 | (2) |
|
|
165 | (22) |
|
|
165 | (1) |
|
|
165 | (1) |
|
|
166 | (3) |
|
|
166 | (1) |
|
11.3.2 Graphical Representation of Vectors |
|
|
167 | (1) |
|
11.3.3 Magnitude of a Vector |
|
|
168 | (1) |
|
|
169 | (12) |
|
11.4.1 Vector Manipulation |
|
|
170 | (1) |
|
|
170 | (1) |
|
11.4.3 Vector Addition and Subtraction |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
173 | (1) |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
174 | (2) |
|
11.4.9 The Vector Product |
|
|
176 | (5) |
|
11.4.10 The Right-Hand Rule |
|
|
181 | (1) |
|
11.5 Deriving a Unit Normal Vector for a Triangle |
|
|
181 | (1) |
|
|
182 | (2) |
|
11.6.1 Calculating 2D Areas |
|
|
183 | (1) |
|
|
184 | (2) |
|
|
184 | (1) |
|
|
184 | (1) |
|
|
184 | (1) |
|
11.7.4 Angle Between Two Vectors |
|
|
185 | (1) |
|
|
185 | (1) |
|
|
186 | (1) |
|
|
187 | (38) |
|
|
187 | (1) |
|
12.2 Representing Complex Numbers |
|
|
187 | (1) |
|
|
187 | (1) |
|
12.2.2 Real and Imaginary Parts |
|
|
188 | (1) |
|
|
188 | (1) |
|
|
188 | (28) |
|
|
188 | (2) |
|
|
190 | (2) |
|
|
192 | (1) |
|
|
193 | (1) |
|
12.3.5 Rotational Qualities of i |
|
|
194 | (2) |
|
12.3.6 Modulus and Argument |
|
|
196 | (2) |
|
|
198 | (1) |
|
|
199 | (1) |
|
12.3.9 Complex Exponentials |
|
|
200 | (4) |
|
12.3.10 de Moivre's Theorem |
|
|
204 | (2) |
|
12.3.11 nth Root of Unity |
|
|
206 | (1) |
|
12.3.12 nth Roots of a Complex Number |
|
|
207 | (1) |
|
12.3.13 Logarithm of a Complex Number |
|
|
208 | (1) |
|
12.3.14 Raising a Complex Number to a Complex Power |
|
|
209 | (3) |
|
12.3.15 Visualising Simple Complex Functions |
|
|
212 | (3) |
|
12.3.16 The Hyperbolic Functions |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
217 | (7) |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
218 | (1) |
|
|
218 | (1) |
|
12.5.6 Real and Imaginary Parts |
|
|
219 | (1) |
|
12.5.7 Magnitude of a Complex Number |
|
|
219 | (1) |
|
|
220 | (1) |
|
|
220 | (1) |
|
12.5.10 de Moivre's Theorem |
|
|
220 | (2) |
|
12.5.11 nth Root of Unity |
|
|
222 | (1) |
|
12.5.12 Roots of a Complex Number |
|
|
222 | (1) |
|
12.5.13 Logarithm of a Complex Number |
|
|
223 | (1) |
|
12.5.14 Raising a Number to a Complex Power |
|
|
223 | (1) |
|
|
224 | (1) |
|
|
225 | (34) |
|
|
225 | (1) |
|
13.2 Geometric Transforms |
|
|
225 | (2) |
|
13.3 Transforms and Matrices |
|
|
227 | (3) |
|
|
230 | (8) |
|
13.4.1 Matrix Dimension or Order |
|
|
230 | (1) |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
231 | (1) |
|
|
231 | (1) |
|
|
231 | (1) |
|
|
232 | (1) |
|
13.4.8 Determinant of a Matrix |
|
|
233 | (1) |
|
|
233 | (1) |
|
|
234 | (2) |
|
13.4.11 Antisymmetric Matrix |
|
|
236 | (2) |
|
13.5 Matrix Addition and Subtraction |
|
|
238 | (1) |
|
13.5.1 Scalar Multiplication |
|
|
238 | (1) |
|
|
239 | (4) |
|
13.6.1 Row and Column Vectors |
|
|
239 | (1) |
|
13.6.2 Row Vector and a Matrix |
|
|
240 | (1) |
|
13.6.3 Matrix and a Column Vector |
|
|
241 | (1) |
|
|
241 | (1) |
|
13.6.5 Rectangular Matrices |
|
|
242 | (1) |
|
|
243 | (7) |
|
13.7.1 Inverting a Pair of Matrices |
|
|
249 | (1) |
|
|
250 | (1) |
|
|
251 | (1) |
|
|
251 | (8) |
|
|
251 | (1) |
|
|
252 | (1) |
|
13.10.3 Solving Two Equations Using Matrices |
|
|
253 | (1) |
|
13.10.4 Solving Three Equations Using Matrices |
|
|
254 | (1) |
|
13.10.5 Solving Two Complex Equations |
|
|
255 | (1) |
|
13.10.6 Solving Three Complex Equations |
|
|
255 | (1) |
|
13.10.7 Solving Two Complex Equations |
|
|
256 | (1) |
|
13.10.8 Solving Three Complex Equations |
|
|
257 | (2) |
|
14 Geometric Matrix Transforms |
|
|
259 | (30) |
|
|
259 | (1) |
|
|
259 | (11) |
|
|
260 | (1) |
|
|
261 | (2) |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
265 | (3) |
|
|
268 | (1) |
|
|
268 | (1) |
|
14.2.8 2D Rotation About an Arbitrary Point |
|
|
269 | (1) |
|
|
270 | (6) |
|
|
270 | (1) |
|
|
271 | (1) |
|
|
271 | (3) |
|
14.3.4 Rotating About an Axis |
|
|
274 | (2) |
|
|
276 | (1) |
|
14.4 Rotating a Point About an Arbitrary Axis |
|
|
276 | (3) |
|
|
276 | (3) |
|
14.5 Determinant of a Transform |
|
|
279 | (1) |
|
14.6 Perspective Projection |
|
|
280 | (2) |
|
|
282 | (7) |
|
14.7.1 2D Scale and Translate |
|
|
282 | (1) |
|
|
283 | (1) |
|
14.7.3 Determinant of the Rotate Transform |
|
|
284 | (1) |
|
14.7.4 Determinant of the Shear Transform |
|
|
284 | (1) |
|
14.7.5 Yaw, Pitch and Roll Transforms |
|
|
285 | (1) |
|
14.7.6 Rotation About an Arbitrary Axis |
|
|
285 | (1) |
|
14.7.7 3D Rotation Transform Matrix |
|
|
286 | (1) |
|
14.7.8 Perspective Projection |
|
|
287 | (2) |
|
|
289 | (62) |
|
|
289 | (1) |
|
|
289 | (1) |
|
15.3 Small Numerical Quantities |
|
|
290 | (1) |
|
15.4 Equations and Limits |
|
|
291 | (8) |
|
15.4.1 Quadratic Function |
|
|
291 | (2) |
|
|
293 | (1) |
|
15.4.3 Functions and Limits |
|
|
294 | (2) |
|
15.4.4 Graphical Interpretation of the Derivative |
|
|
296 | (1) |
|
15.4.5 Derivatives and Differentials |
|
|
297 | (1) |
|
15.4.6 Integration and Antiderivatives |
|
|
298 | (1) |
|
|
299 | (1) |
|
15.6 Differentiating Groups of Functions |
|
|
300 | (11) |
|
|
300 | (2) |
|
15.6.2 Function of a Function |
|
|
302 | (4) |
|
|
306 | (3) |
|
15.6.4 Function Quotients |
|
|
309 | (2) |
|
15.7 Differentiating Implicit Functions |
|
|
311 | (3) |
|
15.8 Differentiating Exponential and Logarithmic Functions |
|
|
314 | (4) |
|
15.8.1 Exponential Functions |
|
|
314 | (3) |
|
15.8.2 Logarithmic Functions |
|
|
317 | (1) |
|
15.9 Differentiating Trigonometric Functions |
|
|
318 | (6) |
|
15.9.1 Differentiating tan |
|
|
318 | (2) |
|
15.9.2 Differentiating esc |
|
|
320 | (1) |
|
15.9.3 Differentiating sec |
|
|
321 | (1) |
|
15.9.4 Differentiating cot |
|
|
322 | (1) |
|
15.9.5 Differentiating arcsin, arccos and arctan |
|
|
323 | (1) |
|
15.9.6 Differentiating arccsc, arcsec and arccot |
|
|
324 | (1) |
|
15.10 Differentiating Hyperbolic Functions |
|
|
324 | (3) |
|
15.10.1 Differentiating sinh, cosh and tanh |
|
|
326 | (1) |
|
|
327 | (1) |
|
15.12 Higher Derivatives of a Polynomial |
|
|
328 | (2) |
|
15.13 Identifying a Local Maximum or Minimum |
|
|
330 | (2) |
|
15.14 Partial Derivatives |
|
|
332 | (6) |
|
15.14.1 Visualising Partial Derivatives |
|
|
335 | (1) |
|
15.14.2 Mixed Partial Derivatives |
|
|
336 | (2) |
|
|
338 | (2) |
|
|
340 | (2) |
|
|
342 | (2) |
|
|
344 | (7) |
|
|
344 | (1) |
|
|
345 | (1) |
|
15.18.3 Differentiating Sums of Functions |
|
|
345 | (1) |
|
15.18.4 Differentiating a Function Product |
|
|
345 | (1) |
|
15.18.5 Differentiating an Implicit Function |
|
|
346 | (1) |
|
15.18.6 Differentiating a General Implicit Function |
|
|
346 | (1) |
|
15.18.7 Local Maximum or Minimum |
|
|
347 | (1) |
|
15.18.8 Partial Derivatives |
|
|
348 | (1) |
|
15.18.9 Mixed Partial Derivative 1 |
|
|
348 | (1) |
|
15.18.10 Mixed Partial Derivative 2 |
|
|
349 | (1) |
|
15.18.11 Total Derivative |
|
|
349 | (2) |
|
|
351 | (44) |
|
|
351 | (1) |
|
|
351 | (1) |
|
16.3 Integration Techniques |
|
|
352 | (2) |
|
16.3.1 Continuous Functions |
|
|
352 | (1) |
|
16.3.2 Difficult Functions |
|
|
353 | (1) |
|
16.4 Trigonometric Identities |
|
|
354 | (16) |
|
|
356 | (1) |
|
16.4.2 Completing the Square |
|
|
357 | (2) |
|
16.4.3 The Integrand Contains a Derivative |
|
|
359 | (1) |
|
16.4.4 Converting the Integrand into a Series of Fractions |
|
|
360 | (1) |
|
16.4.5 Integration by Parts |
|
|
361 | (5) |
|
16.4.6 Integration by Substitution |
|
|
366 | (2) |
|
|
368 | (2) |
|
|
370 | (1) |
|
|
370 | (8) |
|
16.7 Positive and Negative Areas |
|
|
378 | (2) |
|
16.8 Area Between Two Functions |
|
|
380 | (2) |
|
16.9 Areas with the y-Axis |
|
|
382 | (1) |
|
16.10 Area with Parametric Functions |
|
|
383 | (2) |
|
|
385 | (1) |
|
|
386 | (9) |
|
16.12.1 Integrating a Function Containing Its Own Derivative |
|
|
386 | (1) |
|
16.12.2 Dividing an Integral into Several Integrals |
|
|
387 | (1) |
|
16.12.3 Integrating by Parts 1 |
|
|
388 | (1) |
|
16.12.4 Integrating by Parts 2 |
|
|
388 | (2) |
|
16.12.5 Integrating by Substitution 1 |
|
|
390 | (1) |
|
16.12.6 Integrating by Substitution 2 |
|
|
390 | (2) |
|
16.12.7 Integrating by Substitution 3 |
|
|
392 | (1) |
|
16.12.8 Integrating with Partial Fractions |
|
|
392 | (3) |
Appendix A Limit of (sin θ)/θ |
|
395 | (4) |
Appendix B Integrating cosn θ |
|
399 | (2) |
Index |
|
401 | |