Atjaunināt sīkdatņu piekrišanu

Foundations of Chemistry: An Introductory Course for Science Students [Mīkstie vāki]

(University of Reading, UK), (University of Reading, UK)
  • Formāts: Paperback / softback, 592 pages, height x width x depth: 252x198x28 mm, weight: 1315 g
  • Izdošanas datums: 12-Aug-2021
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1119513871
  • ISBN-13: 9781119513872
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 71,55 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 592 pages, height x width x depth: 252x198x28 mm, weight: 1315 g
  • Izdošanas datums: 12-Aug-2021
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1119513871
  • ISBN-13: 9781119513872
Citas grāmatas par šo tēmu:
FOUNDATIONS OF CHEMISTRY A foundation-level guide to chemistry for physical, life sciences and engineering students

Foundations of Chemistry: An Introductory Course for Science Students fills a gap in the literature to provide a basic chemistry text aimed at physical sciences, life sciences and engineering students. The authors, noted experts on the topic, offer concise explanations of chemistry theory and the principles that are typically reviewed in most one year foundation chemistry courses and first year degree-level chemistry courses for non-chemists.

The authors also include illustrative examples and information on the most recent applications in the field. Foundations of Chemistry is an important text that outlines the basic principles in each area of chemistry - physical, inorganic and organic - building on prior knowledge to quickly expand and develop a student's knowledge and understanding.

Key features include:





Worked examples showcase core concepts and practice questions. Margin comments signpost students to knowledge covered elsewhere and are used to highlight key learning objectives. Chapter summaries list the main concepts and learning points.
Preface xvii
Acknowledgements xviii
Contributors xix
About the companion website xx
Fundamentals
1(1)
0.1 Introduction to chemistry
1(1)
0.2 Measurement in chemistry and science - SI units
2(2)
0.3 Expressing large and small numbers using scientific notation
4(2)
0.4 Using metric prefixes
6(4)
0.4.1 Units of mass and volume used in chemistry
7(3)
0.5 Significant figures
10(2)
0.6 Calculations using scientific notation
12(2)
0.6.1 Adding and subtracting
12(1)
0.6.2 Multiplying and dividing numbers
13(1)
0.7 Writing chemical formulae and equations
14(7)
0.7.1 Writing chemical formulae
14(1)
0.7.2 Writing and balancing chemical equations
15(2)
0.7.3 Indicating the physical state of reactants and products in chemical equations
17(1)
Quick-check summary
17(1)
End-of-chapter questions
18(3)
1 Atomic structure
21(18)
1.1 Atomic structure
21(4)
1.1.1 Subatomic particles
21(1)
1.1.2 Mass number (A) and atomic number (Z)
22(1)
1.1.3 Isotopes
23(1)
1.1.4 Radioisotopes
24(1)
1.2 Electronic structure
25(14)
1.2.1 The periodic table
25(1)
1.2.2 Electron energy levels
26(1)
1.2.3 Simple electronic configurations
27(2)
1.2.4 Sub-shells and atomic orbitals
29(2)
1.2.5 Describing electronic configurations
31(2)
1.2.6 Electronic structures and the periodic table
33(4)
Quick-check summary
37(1)
End-of-chapter questions
37(2)
2 Chemical bonding
39(32)
2.1 Bonding
39(10)
2.1.1 Atoms and molecules
39(1)
2.1.2 Metallic bonding
40(1)
2.1.3 Ionic bonding
41(4)
2.1.4 Covalent bonding
45(4)
2.2 Valence Shell Electron Pair Repulsion Theory (VSEPR)
49(8)
2.2.1 How to determine the number of areas of electron density around a central atom
50(1)
2.2.2 Two electron centres around the central atom: linear molecules
50(1)
2.2.3 Three electron centres around the central atom: trigonal planar molecules
51(1)
2.2.4 Four electron centres around the central atom: tetrahedral, pyramidal, and bent molecules
52(1)
2.2.5 Five electron centres around the central atom: trigonal bipyramidal molecules
53(1)
2.2.6 Six electron centres around the central atom: octahedral molecules
54(3)
2.3 Polar bonds and polar molecules
57(4)
2.3.1 Electronegativity
57(2)
2.3.2 Polar bonds
59(1)
2.3.3 Polar molecules
60(1)
2.4 Intermolecular forces
61(10)
2.4.1 Permanent dipole-permanent dipole interactions
63(1)
2.4.2 London dispersion forces (instantaneous dipole-induced dipole)
63(1)
2.4.3 Hydrogen bonding
64(1)
2.4.4 Summary of strengths of intermolecular forces
65(2)
2.4.5 A special case: ion-dipole intermolecular forces
67(1)
Quick-check summary
67(1)
End-of-chapter questions
68(3)
3 Amount of substance
71(30)
3.1 Masses of atoms and molecules
72(2)
3.1.1 Relative atomic mass, Ar
72(1)
3.1.2 Relative molecular mass, Mr
72(1)
3.1.3 Relative formula mass
73(1)
3.2 Amount of substance
74(2)
3.2.1 The mole
74(1)
3.2.2 Converting between moles and masses of substances - molar mass
75(1)
3.3 Calculations with moles
76(10)
3.3.1 Reacting masses
77(2)
3.3.2 Percentage yield
79(2)
3.3.3 Percentage composition by mass
81(2)
3.3.4 Empirical formula
83(3)
3.4 Solutions; concentrations, and dilutions
86(5)
3.4.1 Measuring and expressing concentrations
86(2)
3.4.2 Solutions and dilutions
88(2)
3.4.3 Alternative units of concentration
90(1)
3.5 Titration calculations
91(5)
3.5.1 Back titration
94(2)
3.6 Calculations with gas volumes
96(5)
Quick check summary
98(1)
End-of-chapter questions
99(2)
4 States of matter
101(30)
4.1 Introduction
101(2)
4.2 Solids
103(4)
4.2.1 Metallic lattices
103(1)
4.2.2 Ionic lattices
104(1)
4.2.3 Simple molecular solids and giant molecular structures
105(2)
4.3 Liquids
107(13)
4.3.1 Evaporation and condensation, vapour pressure, and boiling
108(1)
4.3.2 Effect of intermolecular forces on melting and boiling points
109(4)
4.3.3 The effect of hydrogen bonding on melting and boiling points of covalent compounds
113(7)
4.4 Gases
120(11)
4.4.1 Ideal gases
120(1)
4.4.2 The ideal gas equation
120(5)
4.4.3 The molar gas volume, Vm
125(1)
Quick-check summary
126(1)
End-of-chapter questions
127(4)
5 Oxidation-reduction (redox) reactions
131(18)
5.1 Redox reactions
131(11)
5.1.1 Electron transfer in redox reactions
131(2)
5.1.2 Oxidation number
133(2)
5.1.3 Naming compounds based on the oxidation state of elements in the compound
135(2)
5.1.4 Redox half-equations
137(3)
5.1.5 Oxidising agents and reducing agents
140(2)
5.2 Disproportionate reactions
142(1)
5.3 Redox titrations
143(6)
Quick-check summary
146(1)
End-of-chapter questions
146(3)
6 Energy, enthalpy, and entropy
149(54)
6.1 Enthalpy changes
150(36)
6.1.1 Energy and enthalpy
150(1)
6.1.2 Exothermic and endothermic reactions
151(1)
6.1.3 Reaction pathway diagrams
152(1)
6.1.4 Measuring enthalpy changes
153(1)
6.1.5 Measuring enthalpy changes using calorimetry
154(10)
6.1.6 Hess's law
164(5)
6.1.7 Bond energies and enthalpy changes
169(5)
6.1.8 Born--Haber cycles
174(10)
6.1.9 Factors affecting the size of the lattice enthalpy
184(2)
6.2 Entropy and Gibbs free energy
186(17)
6.2.1 Entropy
187(3)
6.2.2 Spontaneous processes and the second law of thermodynamics
190(4)
6.2.3 Gibbs free energy and spontaneous reactions
194(4)
Quick-check summary
198(1)
End-of-chapter questions
199(4)
7 Chemical equilibrium and acid-base equilibrium
203(52)
7.1 Introduction
204(1)
7.2 Equilibrium and reversible reactions
204(20)
7.2.1 Characteristics of an equilibrium
205(1)
7.2.2 The equilibrium mixture and the equilibrium constant, Kc
205(9)
7.2.3 The effects of changing the reaction conditions on the position of equilibrium
214(6)
7.2.4 Heterogeneous and homogeneous equilibria
220(1)
7.2.5 The equilibrium constant, Kp
221(3)
7.3 Acid-base equilibria
224(31)
7.3.1 The Brensted-Lowry theory of acids and bases
224(5)
7.3.2 The pH scale
229(2)
7.3.3 Strong and weak acids and bases
231(3)
7.3.4 The ionisation of water
234(2)
7.3.5 Acid-base reactions
236(1)
7.3.6 Carrying out a titration
237(1)
7.3.7 Indicators
238(2)
7.3.8 Acid-base titrations
240(3)
7.3.9 Buffers
243(3)
7.3.10 Calculating the pH of a buffer solution
246(3)
7.3.11 Lewis acids and bases
249(1)
Quick-check summary
250(1)
End-of-chapter questions
251(4)
8 Chemical kinetics -- the rates of chemical reactions
255(44)
8.1 Introduction
256(1)
8.2 The rate of reaction
256(9)
8.2.1 Defining the rate of a chemical reaction
256(3)
8.2.2 Collision theory
259(1)
8.2.3 Factors that affect the rate of a reaction
260(5)
8.3 Determining the rate of a chemical reaction
265(3)
8.3.1 Methods of monitoring the rate of a chemical reaction
265(1)
8.3.2 The instantaneous rate of reaction
265(2)
8.3.3 An example of measuring rate of reaction at any time
267(1)
8.4 The rate expression
268(11)
8.4.1 Determining the rate expression using instantaneous rates
270(1)
8.4.2 Determining the rate expression using the initial rates method
270(3)
8.4.3 Determining the rate expression by inspection
273(2)
8.4.4 Determining the rate expression using the integrated rate expression
275(4)
8.5 The half-life of a reaction
279(7)
8.5.1 Half-life of first-order reactions
280(1)
8.5.2 Half-life of zero-order reactions
281(1)
8.5.3 Half-life of second-order reactions
282(4)
8.6 Reaction mechanisms
286(4)
8.6.1 Reaction mechanisms and the rate-determining step
286(1)
8.6.2 Using the rate expression to determine the mechanism of a reaction
287(3)
8.7 Effect of temperature on reaction rate
290(9)
8.7.1 The distribution of the energies of molecules with temperature
290(1)
8.7.2 The Arrhenius equation
290(3)
Quick-check summary
293(1)
End-of-chapter questions
294(5)
9 Electrochemistry
299(30)
9.1 Introduction
300(1)
9.2 Using redox reactions
300(17)
9.2.1 Redox Reactions and electrochemical cells
301(1)
9.2.2 Electrochemical cells and half-cells
301(5)
9.2.3 Standard electrode potentials, Eθ
306(1)
9.2.4 The standard hydrogen electrode
306(3)
9.2.5 Half-cells involving non-metals and non-metal ions
309(1)
9.2.6 The cell diagram
310(2)
9.2.7 Using Ee values to obtain voltages of electrochemical cells
312(3)
9.2.8 Using standard reduction potentials to predict the outcome of redox reactions
315(1)
9.2.9 Relation between Eθ and Gibbs energy
316(1)
9.2.10 The effect of non-standard conditions on cell potential -- the Nernst equation
317(1)
9.3 Using redox reactions -- galvanic cells
317(4)
9.3.1 Galvanic (voltaic) cells
317(1)
9.3.2 The variety of cells
318(1)
9.3.3 Disposable batteries
318(1)
9.3.4 Rechargeable cells
319(1)
9.3.5 Fuel cells
320(1)
9.4 Using redox reactions - electrolytic cells
321(8)
9.4.1 Electrolysis
321(1)
9.4.2 Electrolysis of molten substances
322(1)
9.4.3 Electrolysis of aqueous solutions
323(1)
9.4.4 Calculating the amount of substance deposited during electrolysis
323(1)
Quick-check summary
324(2)
End-of-chapter questions
326(3)
10 Group trends and periodicity
329(22)
10.1 The periodic table: periods, groups, and periodicity
329(1)
10.2 Trends in properties of elements in the same vertical group of the periodic table
330(7)
10.2.1 Electron configuration
331(1)
10.2.2 Effective nuclear charge, Zeff
331(1)
10.2.3 Atomic radius
332(1)
10.2.4 Ionisation energies
333(1)
10.2.5 Electronegativity
334(1)
10.2.6 Electron affinity (electron gain enthalpy)
334(3)
10.3 Trends in properties of elements in the same horizontal period
337(14)
10.3.1 Electron configuration
337(1)
10.3.2 Atomic radius
338(1)
10.3.3 Ionisation energy
339(2)
10.3.4 Electronegativity
341(1)
10.3.5 Electron affinity, ΔEAHθ
342(2)
10.3.6 Ionic radius
344(2)
10.3.7 Melting point and boiling point
346(1)
10.3.8 Trends in chemical properties across a period
346(1)
Quick-check summary
347(1)
End-of-chapter questions
348(3)
11 The periodic table - chemistry of Groups 1, 2, 7 (17), and transition elements
351(52)
11.1 Introduction
352(1)
11.2 Group 1 -- the alkali metals
352(6)
11.2.1 Physical properties of Group 1 elements
354(2)
11.2.2 Chemical properties of Group 1 elements
356(2)
11.3 Group 2 -- the alkaline earth metals
358(12)
11.3.1 Physical properties of Group 2 elements
359(3)
11.3.2 Chemical properties of Group 2 elements
362(1)
11.3.3 Some s block compounds and their properties
363(7)
11.4 Group 7 (17) -- the halogens
370(9)
11.4.1 Physical properties of Group 7 (17) elements
370(3)
11.4.2 Reactions of Group 7 (17) elements
373(6)
11.5 The transition elements
379(24)
11.5.1 Physical properties of transition elements
380(4)
11.5.2 Complexes of transition elements
384(3)
11.5.3 Redox reactions
387(3)
11.5.4 Origin of colour in transition metal complexes
390(2)
11.5.5 Isomerism in coordination complexes
392(1)
11.5.6 Ligand substitution in transition metal complexes
393(2)
Quick-check summary
395(2)
End-of-chapter questions
397(6)
12 Core concepts and ideas within organic chemistry
403(28)
12.1 Types of molecular formulae
403(4)
12.1.1 Empirical and molecular formulae
404(1)
12.1.2 Skeletal formula
404(2)
12.1.3 Homologous series
406(1)
12.2 Nomenclature of simple alkanes
407(6)
12.2.1 Nomenclature for esters
412(1)
12.3 Isomers
413(9)
12.3.1 Chain isomerism
413(1)
12.3.2 Positional isomerism
414(1)
12.3.3 Functional group isomerism
414(1)
12.3.4 Z and E isomerism (alkenes only)
415(3)
12.3.5 Chirality
418(4)
12.3.6 Summary of isomerism
422(1)
12.4 Drawing reaction mechanisms
422(3)
12.4.1 Types of arrows
423(1)
12.4.2 Electrophiles, nucleophiles, and radicals
424(1)
12.5 Types of reactions
425(6)
12.5.1 Electrophilic addition (to an alkene)
425(1)
12.5.2 Nucleophilic addition (to a carbonyl group)
426(1)
12.5.3 Electrophilic aromatic substitution
426(1)
12.5.4 Nucleophilic substitution
426(1)
12.5.5 Elimination
427(1)
12.5.6 Condensation
427(1)
Quick-check summary
427(1)
End-of-chapter questions
428(3)
13 Alkanes, alkenes, and alkynes
431(18)
13.1 Alkanes: an outline
431(8)
13.1.1 Alkanes and crude oil
432(1)
13.1.2 Combustion of alkanes
433(1)
13.1.3 Cracking alkanes
434(2)
13.1.4 Reactions of alkanes: radicals
436(3)
13.2 Alkenes: an outline
439(7)
13.2.1 Bonding in alkenes
439(1)
13.2.2 Sigma (σ) bonding
440(1)
13.2.3 Pi (π) bonding
440(2)
13.2.4 Testing for alkenes
442(1)
13.2.5 Reaction of alkenes with electrophiles
443(2)
13.2.6 General reactions of alkenes
445(1)
13.3 Alkynes: an outline
446(3)
13.3.1 General reactions of alkynes
446(1)
Quick-check summary
447(1)
End-of-chapter questions
448(1)
14 Reactivity of selected homologous series
449(20)
14.1 Alcohols
449(5)
14.1.1 Primary alcohols
450(1)
14.1.2 Secondary alcohols
450(1)
14.1.3 Tertiary alcohols
451(1)
14.1.4 Combustion of alcohols
451(1)
14.1.5 Oxidation of alcohols
451(3)
14.2 Aldehydes and ketones
454(2)
14.2.1 Nucleophilic addition
454(1)
14.2.2 Tests for aldehydes and ketones
455(1)
14.3 Carboxylic acids
456(2)
14.3.1 Preparation and properties of carboxylic acids
456(1)
14.3.2 Deprotonation of carboxylic acids
457(1)
14.3.3 Reduction of carboxylic acids
458(1)
14.4 Esters
458(2)
14.4.1 Properties of esters
458(1)
14.4.2 Hydrolysis of esters
459(1)
14.5 Amides
460(2)
14.5.1 Preparation and properties of amides
460(1)
14.5.2 Hydrolysis of amides
461(1)
14.6 Amines
462(2)
14.6.1 Naming amines
462(2)
14.6.2 Amines as bases
464(1)
14.6.3 Preparation of alkyl amines
464(1)
14.7 Nitrites
464(5)
14.7.1 Nitrile formation
465(1)
Quick-check summary
465(1)
End-of-chapter questions
466(3)
15 The chemistry of aromatic compounds
469(18)
15.1 Benzene
469(8)
15.1.1 The structure of benzene
469(2)
15.1.2 Nomenclature
471(2)
15.1.3 The reactivity of benzene
473(1)
15.1.4 Resonance in benzene
474(2)
15.1.5 Substituent effects on reactivity
476(1)
15.2 Reactions of benzene with electrophiles
477(6)
15.2.1 Halogenation
477(1)
15.2.2 Friedel--Crafts alkylation
478(1)
15.2.3 Friedel--Crafts acylation
479(1)
15.2.4 Nitration
479(1)
15.2.5 Substituent effects on position of substitution
480(1)
15.2.6 Reaction of phenol with electrophiles
480(2)
15.2.7 Reaction of toluene with electrophiles
482(1)
15.2.8 Reaction of nitrobenzene with electrophiles
482(1)
15.3 Aniline
483(4)
Quick-check summary
484(1)
End-of-chapter questions
485(2)
16 Substitution and elimination reactions
487(12)
16.1 Substitution reactions
487(5)
16.1.1 SN1 reactions
487(2)
16.1.2 SN2 reactions
489(3)
16.2 Elimination reactions
492(3)
16.2.1 E1 reactions
492(1)
16.2.2 E2 reactions
493(2)
16.2.3 Zaitsev and Hofmann alkenes
495(1)
16.3 Comparison of substitution and elimination reactions
495(4)
Quick-check summary
495(1)
End-of-chapter questions
496(3)
17 Bringing it all together
499(8)
17.1 Functional group interconversion
499(1)
17.2 Bringing it all together
499(8)
Quick-check summary
504(1)
End-of-chapter questions
504(3)
18 Polymerisation
507(8)
18.1 Polymerisation
507(8)
18.1.1 Addition polymerisation
507(2)
18.1.2 LDPE and HDPE
509(1)
18.1.3 Condensation polymerisation
509(3)
Quick-check summary
512(1)
End-of-chapter questions
512(3)
19 Spectroscopy
515(34)
19.1 Mass spectrometry
515(4)
19.1.1 How a mass spectrometer works
515(1)
19.1.2 Using the data from the mass spectrum
516(1)
19.1.3 Mass spectrometry in organic chemistry
517(2)
19.2 Infrared spectroscopy (IR)
519(4)
19.3 Nuclear magnetic resonance spectroscopy (NMR)
523(14)
19.3.1 The NMR spectrum
523(14)
19.3.2 Confirming the identity of O---H and N---H peaks
537(1)
19.4 Bringing it all together
537(12)
Quick-check summary
541(1)
End-of-chapter questions
541(8)
Appendix 549(2)
Short end-of-chapter answers 551(14)
Index 565
Philippa B. Cranwell is Associate Professor of Organic Chemistry at the University of Reading. She has extensive experience of teaching students chemistry, ranging from A-level to Foundation level and higher. She has co-authored several texts relating to both practical and theoretical organic chemistry. She actively undertakes research in the field of chemistry education and regularly publishes her work. She was awarded a University of Reading Teaching Fellowship in 2016 for her contribution to teaching and learning.

Elizabeth M. Page is Emeritus Professor of Chemistry Education at the University of Reading. She has over 30 years experience of teaching chemistry at Foundation level and higher. She is author of several text books for life-sciences and chemistry students. Elizabeth has been an examiner for A level chemistry and helped in the design of the revised A level specifications in chemistry. During her time at Reading she established a strong network of chemistry teachers, providing a forum for discussions and guidance in teaching GCSE and A level chemistry. Elizabeth was awarded the Royal Society of Chemistry Education prize for her work with chemistry teachers and is a National and University of Reading Teaching Fellow.