Atjaunināt sīkdatņu piekrišanu

E-grāmata: Foundations of Image Understanding

Edited by
  • Formāts - PDF+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Computer systems that analyze images are critical to a wide variety of applications such as visual inspections systems for various manufacturing processes, remote sensing of the environment from space-borne imaging platforms, and automatic diagnosis from X-rays and other medical imaging sources. Professor Azriel Rosenfeld, the founder of the field of digital image analysis, made fundamental contributions to a wide variety of problems in image processing, pattern recognition and computer vision. Professor Rosenfeld's previous students, postdoctoral scientists, and colleagues illustrate in Foundations of Image Understanding how current research has been influenced by his work as the leading researcher in the area of image analysis for over two decades.
Each chapter of Foundations of Image Understanding is written by one of the world's leading experts in his area of specialization, examining digital geometry and topology (early research which laid the foundations for many industrial machine vision systems), edge detection and segmentation (fundamental to systems that analyze complex images of our three-dimensional world), multi-resolution and variable resolution representations for images and maps, parallel algorithms and systems for image analysis, and the importance of human psychophysical studies of vision to the design of computer vision systems. Professor Rosenfeld's chapter briefly discusses topics not covered in the contributed chapters, providing a personal, historical perspective on the development of the field of image understanding.
Foundations of Image Understanding is an excellent source of basic material for both graduate students entering the field and established researchers who require a compact source for many of the foundational topics in image analysis.

Papildus informācija

Springer Book Archives
1 Summation.-
1. Beginnings.-
2. Bibliographies, books, surveys, and
position papers.-
3. Geometry.-
4. Texture analysis, segmentation, and
feature detection.-
5. Other topics.- 2 Digital Geometry The Birth of a New
Discipline.-
1. Introduction.-
2. Three classic papers by A. Rosenfeld and J.
L. Pfaltz.-
3. Traditional digital geometry.-
4. Digitized Euclidean
geometry.-
5. Approximation of curves.-
6. Approximation of surfaces.-
7.
Conclusions.- 3 Digital Topology.-
1. Introduction.-
2. The discrete Jordan
curve theorem.-
3. Good pairs of adjacency relations.-
4. Simple points.-
5.
Adjacency trees; boundary and border following algorithms.-
6. Concluding
remarks.- 4 Fuzzy Mathematics.-
1. Introduction.-
2. Geometry.-
3. Digital
topology.-
4. Graph theory.-
5. Algebra.- 5 Picture Languages.-
1.
Introduction.-
2. Formal languages for pictorial pattern recognition.-
3. 2D
and 3D array grammars and array languages.-
4. Parallel grammars and parallel
acceptors.-
5. Web grammars, web automata, and cellular graph automata.-
6.
An application of array grammars.-
7. Further topics.-
8. List of Rosenfelds
works on picture languages.- 6 Parallel Image Processing.-
1. Introduction.-
2. Parallel computers for image processing.-
3. Pixel-level processing.-
4.
Region-level processing.-
5. Concluding remarks.- 7 Object Representations.-
1. Introduction.-
2. Unit-size cells.-
3. Blocks.-
4. Arbitrary objects.-
5.
Hierarchical representations.-
6. Boundary-based representations.-
7.
Concluding remarks.- 8 Texture Classification and Segmentation.-
1.
Tribulations.-
2. Triumphs.-
3. Tributes.- 9 Edge Measures Using Similarity
Regions.-
1. Introduction.-
2. Related work.-
3. Edges and similarity
regions.-
4. SRS-based edge measures.-
5. Preprocessing using clustering.-
6.
Discussionand conclusions.- 10 Relaxation Labeling: 25 Years and Still
Iterating.-
1. Introduction.-
2. Historical remarks.-
3. Tangent maps and
compatibilities for curve inference.-
4. Subtree isomorphism for shape
matching.-
5. Polymatrix games.-
6. Summary and conclusions.- 11 From a
Robust Hierarchy to a Hierarchy of Robustness.-
1. Inside image pyramids.-
2.
Stochastic pyramids and least median of squares.-
3. The vision perspective
of robustness.-
4. Instead of conclusions.- 12 A Pyramid Framework for
Real-Time Computer Vision.-
1. Introduction.-
2. From human to computer
vision.-
3. Pyramid transforms.-
4. Frame-to-frame alignment.-
5. Space/time
filters.-
6. Multi-resolution fusion.-
7. Displacement fields.-
8. Attribute
maps.-
9. Vision front-end system.-
10. Next steps.- 13 On the Computational
Modeling of Human Vision.-
1. Introduction.-
2. One-stage theories.-
3.
Multiple processes: Perception of lightness.-
4. Multiple representations:
Visual segregation.-
5. Multiple sources of information: Perception of
transparency.-
6. Impenetrability.-
7. Summary.- 14 Statistics Explains
Geometrical Optical Illusions.-
1. Introduction.-
2. Errors in gray values.-
3. Errors in line elements.-
4. Errors in motion.-
5. The inherent problem.-
6. Discussion and summary.- Appendix: Expected value of the least squares
solution.- 15 Optics for OmniStereo Imaging.-
1. Introduction.-
2. Circular
projections.-
3. OmniStereo mosaicking.-
4. Curves for OmniStereo optics.-
5.
Spiral mirror, I.-
6. Spiral mirror, II.-
7. A spiral lens.-
8. Concluding
remarks.- 16 Volumetric Scene Reconstruction from Multiple Views.-
1.
Introduction.-
2. Volumetric representations.-
3. Shape from silhouettes.-
4.
Shape from photo-consistency.-
5. Voxel visibility using plane-sweep.-
6.
Voxel coloring.-
7. Space carving.-
8. Better reconstructions.-
9.
Extensions.-
10. Conclusions.