Preface |
|
xvii | |
1 Fundamental Plasma Parameters - Collective Behaviour |
|
1 | (12) |
|
|
1 | (1) |
|
|
2 | (2) |
|
|
3 | (1) |
|
|
4 | (4) |
|
1.3.1 Weakly and Strongly Coupled Plasmas |
|
|
6 | (1) |
|
1.3.2 The Plasma Parameter |
|
|
7 | (1) |
|
1.4 Diffusion and Mobility |
|
|
8 | (1) |
|
1.4.1 Einstein-Smoluchowski Relation |
|
|
8 | (1) |
|
1.4.2 Ambipolar Diffusion |
|
|
9 | (1) |
|
|
9 | (4) |
|
1.5.1 Positively Biased Wall |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
11 | (1) |
|
1.5.3 Mobility Limited Sheath |
|
|
11 | (2) |
2 Fundamental Plasma Parameters - Collisional Behaviour |
|
13 | (30) |
|
2.1 Electron Scattering by Ions |
|
|
13 | (8) |
|
2.1.1 Binary Collisions - Rutherford Cross Section |
|
|
13 | (2) |
|
2.1.2 Momentum Transfer Cross Section |
|
|
15 | (1) |
|
2.1.2.1 Dynamical Friction and Diffusion |
|
|
16 | (1) |
|
2.1.3 Many Body Collisions - Impulse Approximation |
|
|
16 | (4) |
|
|
20 | (1) |
|
2.2 Collisional Transport Effects |
|
|
21 | (9) |
|
2.2.1 Random Walk Model for Transport Effects |
|
|
22 | (1) |
|
2.2.2 Maxwell's Mean Free Path Model of Transport Phenomena |
|
|
23 | (3) |
|
|
25 | (1) |
|
2.2.3 Drude Model of Electrical Conductivity |
|
|
26 | (3) |
|
2.2.3.1 Alternating Electric Field, No Magnetic Field |
|
|
27 | (1) |
|
2.2.3.2 Steady Electric Field, Finite Magnetic Field |
|
|
27 | (1) |
|
2.2.3.3 Oscillatory Electric Field, Finite Magnetic Field |
|
|
28 | (1) |
|
2.2.4 Diffusivity and Mobility in a Uniform Magnetic Field |
|
|
29 | (1) |
|
|
30 | (2) |
|
2.3.1 Poynting's Theorem - Energy Balance in an Electro-magnetic Field |
|
|
31 | (1) |
|
2.4 Plasma as a Fluid - Two Fluid Model |
|
|
32 | (7) |
|
|
33 | (3) |
|
|
36 | (1) |
|
|
36 | (1) |
|
2.4.2.2 Two Stream Instability |
|
|
36 | (1) |
|
2.4.3 Kinematics of Growing Waves |
|
|
37 | (2) |
|
Appendix 2.A Momentum Transfer Collision Rate |
|
|
39 | (2) |
|
Appendix 2.B The Central Limit Theorem |
|
|
41 | (2) |
3 Single Particle Motion - Guiding Centre Model |
|
43 | (24) |
|
|
43 | (1) |
|
3.2 Motion in Stationary and Uniform Fields |
|
|
44 | (1) |
|
3.2.1 Static Uniform Magnetic Field - Cyclotron Motion |
|
|
44 | (1) |
|
3.2.2 Uniform Static Electric and Magnetic Fields |
|
|
45 | (1) |
|
3.3 The Guiding Centre Approximation |
|
|
45 | (6) |
|
3.3.1 The Method of Averaging |
|
|
46 | (2) |
|
3.3.2 The Guiding Centre Model for Charged Particles |
|
|
48 | (3) |
|
3.4 Particle Kinetic Energy |
|
|
51 | (1) |
|
3.5 Motion in a Static Inhomogeneous Magnetic Field |
|
|
52 | (4) |
|
3.5.1 Field Gradient Drift |
|
|
53 | (1) |
|
|
53 | (2) |
|
3.5.3 Divergent Field Lines |
|
|
55 | (1) |
|
3.5.4 Twisted Field Lines |
|
|
55 | (1) |
|
3.6 Motion in a Time Varying Magnetic Field |
|
|
56 | (1) |
|
3.7 Motion in a Time Varying Electric Field |
|
|
56 | (2) |
|
|
58 | (1) |
|
|
58 | (1) |
|
3.10 Particle Trapping and Magnetic Mirrors |
|
|
59 | (2) |
|
3.10.1 Fermi Acceleration |
|
|
61 | (1) |
|
3.11 Adiabatic Invariance |
|
|
61 | (2) |
|
3.12 Adiabatic Invariants of Charged Particle Motions |
|
|
63 | (1) |
|
Appendix 3.A Northrop's Expansion Procedure |
|
|
64 | (1) |
|
3.A.1 Drift Velocity and Longitudinal Motion along the Field Lines |
|
|
65 | (2) |
4 Kinetic Theory of Gases |
|
67 | (22) |
|
|
67 | (1) |
|
|
68 | (3) |
|
|
68 | (2) |
|
4.2.1.1 Liouville's Equation |
|
|
69 | (1) |
|
|
70 | (1) |
|
4.3 Relationship Between F Space and µ Space |
|
|
71 | (2) |
|
4.3.1 Integrals of the Liouville Equation |
|
|
72 | (1) |
|
4.4 The BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) Hierarchy |
|
|
73 | (1) |
|
4.5 Bogoliubov's Hypothesis for Dilute Gases |
|
|
74 | (2) |
|
4.6 Derivation of the Boltzmann Collision Integral from the BBGKY Hierarchy |
|
|
76 | (2) |
|
4.7 Boltzmann Collision Operator |
|
|
78 | (1) |
|
4.7.1 Summation Invariants |
|
|
79 | (1) |
|
4.8 Boltzmann's H Theorem |
|
|
79 | (1) |
|
4.9 The Equilibrium Maxwell-Boltzmann Distribution |
|
|
80 | (1) |
|
4.9.1 Entropy and the H function |
|
|
81 | (1) |
|
4.10 Hydrodynamic Limit - Method of Moments |
|
|
81 | (3) |
|
4.10.1 Conservation of Mass |
|
|
83 | (1) |
|
4.10.2 Conservation of Momentum |
|
|
83 | (1) |
|
4.10.3 Conservation of Energy |
|
|
84 | (1) |
|
4.11 The Departure from Steady Homogeneous Flow: The Chapman-Enskog Approximation |
|
|
84 | (5) |
5 Wave Propagation in Inhomogeneous, Dispersive Media |
|
89 | (22) |
|
|
89 | (1) |
|
5.2 Basic Concepts of Wave Propagation - The Geometrical Optics Approximation |
|
|
90 | (2) |
|
5.3 The WKB Approximation |
|
|
92 | (1) |
|
|
93 | (1) |
|
5.4 Singularities in Waves |
|
|
93 | (7) |
|
5.4.1 Cut-off or Turning Point |
|
|
94 | (2) |
|
|
96 | (3) |
|
5.4.3 Resonance Layer and Collisional Damping |
|
|
99 | (1) |
|
5.5 The Propagation of Energy |
|
|
100 | (2) |
|
5.5.1 Group Velocity of Waves in Dispersive Media |
|
|
100 | (1) |
|
5.5.2 Waves in Dispersive Isotropic Media |
|
|
101 | (1) |
|
5.6 Group Velocity of Waves in Anisotropic Dispersive Media |
|
|
102 | (5) |
|
5.6.1 Equivalence of Energy Transport Velocity and Group Velocity |
|
|
106 | (1) |
|
Appendix 5.A Waves in Anisotropic Inhomogeneous Media |
|
|
107 | (4) |
6 Kinetic Theory of Plasmas - Collisionless Models |
|
111 | (10) |
|
|
111 | (1) |
|
|
111 | (3) |
|
6.3 Particle Trapping by a Potential Well |
|
|
114 | (7) |
7 Kinetic Theory of Plasmas |
|
121 | (28) |
|
|
121 | (1) |
|
7.2 The Fokker-Planck Equation - The Stochastic Approach |
|
|
122 | (6) |
|
7.2.1 The Scattering Integral for Coulomb Collisions |
|
|
124 | (4) |
|
7.3 The Fokker-Planck Equation - The Landau Equation |
|
|
128 | (3) |
|
7.3.1 Application to Collisions between Charged Particles |
|
|
130 | (1) |
|
7.4 The Fokker-Planck Equation - The Cluster Expansion |
|
|
131 | (4) |
|
7.4.1 The Balescu-Lenard Equation |
|
|
132 | (3) |
|
7.5 Relaxation of a Distribution to the Equilibrium Form |
|
|
135 | (4) |
|
7.5.1 Isotropic Distribution |
|
|
135 | (2) |
|
7.5.2 Anisotropic Distribution |
|
|
137 | (2) |
|
7.6 Ion-Electron Thermal Equilibration by Coulomb Collisions |
|
|
139 | (1) |
|
|
140 | (2) |
|
Appendix 7.A Reduction of the Boltzmann Equation to Fokker-Planck Form in the Weak Collision Limit |
|
|
142 | (2) |
|
Appendix 7.B Finite Difference Algorithm for Integrating the Isotropic Fokker-Planck Equation |
|
|
144 | (1) |
|
Appendix 7.C Monte Carlo Algorithm for Integrating the Fokker-Planck Equation |
|
|
145 | (2) |
|
Appendix 7.D Landau's Calculation of the Electron-Ion Equilibration Rate |
|
|
147 | (2) |
8 The Hydrodynamic Limit for Plasma |
|
149 | (38) |
|
8.1 Introduction - Individual Particle Fluid Equations |
|
|
149 | (1) |
|
8.2 The Departure from Steady, Homogeneous Flow: The Transport Coefficients |
|
|
150 | (1) |
|
8.3 Magneto-hydrodynamic Equations |
|
|
151 | (5) |
|
8.3.1 Equation of Mass Conservation |
|
|
151 | (1) |
|
8.3.2 Equation of Momentum Conservation |
|
|
152 | (2) |
|
|
154 | (1) |
|
8.3.4 Equation of Current Flow |
|
|
154 | (1) |
|
8.3.5 Equation of Energy Conservation |
|
|
155 | (1) |
|
|
156 | (5) |
|
|
157 | (1) |
|
8.4.2 Symmetry of the Transport Equations |
|
|
158 | (3) |
|
8.5 Two Fluid MHD Equations - Braginskii Equations |
|
|
161 | (4) |
|
8.5.1 Magnetic Field Equations |
|
|
162 | (3) |
|
|
164 | (1) |
|
8.6 Transport Coefficients |
|
|
165 | (3) |
|
8.6.1 Collisional Dominated Plasma |
|
|
165 | (1) |
|
|
165 | (1) |
|
8.6.1.2 Energy Flux Terms |
|
|
165 | (1) |
|
|
166 | (1) |
|
8.6.2 Field-Dominated Plasma |
|
|
166 | (4) |
|
|
166 | (1) |
|
8.6.2.2 Energy Flux Terms |
|
|
167 | (1) |
|
|
168 | (1) |
|
8.7 Calculation of the Transport Coefficients |
|
|
168 | (2) |
|
8.8 Lorentz Approximation |
|
|
170 | (7) |
|
8.8.1 Electron-Electron Collisions |
|
|
173 | (1) |
|
|
174 | (3) |
|
8.9 Deficiencies in the Spitzer/Braginskii Model of Transport Coefficients |
|
|
177 | (1) |
|
Appendix 8.A BGK Model for the Calculation of Transport Coefficients |
|
|
178 | (3) |
|
8.A.1 BGK Conductivity Model |
|
|
178 | (2) |
|
8.A.2 BGK Viscosity Model |
|
|
180 | (1) |
|
Appendix 8.B The Relationship Between the Flux Equations Given By Shkarofsky and Braginskii |
|
|
181 | (1) |
|
Appendix 8.C Electrical Conductivity in a Weakly Ionised Gas and the Druyvesteyn Distribution |
|
|
182 | (5) |
9 Ideal Magnetohydrodynamics |
|
187 | (10) |
|
9.1 Infinite Conductivity MHD Flow |
|
|
188 | (4) |
|
9.1.1 Frozen Field Condition |
|
|
189 | (1) |
|
9.1.2 Adiabatic Equation of State |
|
|
190 | (1) |
|
|
191 | (1) |
|
|
191 | (1) |
|
9.2 Incompressible Approximation |
|
|
192 | (5) |
|
9.2.1 Bernoulli's Equation - Steady Flow |
|
|
192 | (1) |
|
9.2.2 Kelvin's Theorem - Circulation |
|
|
193 | (1) |
|
|
193 | (4) |
10 Waves in MHD Fluids |
|
197 | (26) |
|
|
197 | (1) |
|
|
198 | (5) |
|
10.3 Discontinuities in Fluid Mechanics |
|
|
203 | (2) |
|
|
203 | (1) |
|
10.3.2 Discontinuities in Magneto-hydrodynamic Fluids |
|
|
204 | (1) |
|
10.4 The Rankine-Hugoniot Relations for MHD Flows |
|
|
205 | (1) |
|
10.5 Discontinuities in MHD Flows |
|
|
206 | (1) |
|
|
207 | (1) |
|
10.6.1 Simplifying Frame Transformations |
|
|
207 | (1) |
|
10.7 Properties of MHD Shocks |
|
|
208 | (4) |
|
|
208 | (1) |
|
10.7.2 Shock Adiabat - General Solution for a Polytropic Gas |
|
|
209 | (3) |
|
|
212 | (4) |
|
10.8.1 Evolutionary MHD Shock Waves |
|
|
213 | (1) |
|
10.8.2 Parallel Shock - Magnetic Field Normal to the Shock Plane |
|
|
214 | (2) |
|
10.9 Switch-on and Switch-off Shocks |
|
|
216 | (1) |
|
10.10 Perpendicular Shock - Magnetic Field Lying in the Shock Plane |
|
|
217 | (1) |
|
10.11 Shock Structure and Stability |
|
|
218 | (1) |
|
Appendix 10.A Group Velocity of Magneto-sonic Waves |
|
|
218 | (2) |
|
Appendix 10.B Solution in de Hoffman-Teller Frame |
|
|
220 | (3) |
|
|
222 | (1) |
11 Waves in Cold Magnetised Plasma |
|
223 | (14) |
|
|
223 | (1) |
|
11.2 Waves in Cold Plasma |
|
|
223 | (4) |
|
11.2.1 Cut-off and Resonance |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
227 | (10) |
|
11.3.1 Zero Applied Magnetic Field |
|
|
227 | (1) |
|
11.3.2 Low Frequency Velocity Waves |
|
|
228 | (1) |
|
11.3.3 Propagation of Waves Parallel to the Magnetic Field |
|
|
229 | (3) |
|
11.3.4 Propagation of Waves Perpendicular to the Magnetic Field |
|
|
232 | (2) |
|
11.3.5 Resonance in Plasma Waves |
|
|
234 | (3) |
12 Waves in Magnetised Warm Plasma |
|
237 | (44) |
|
12.1 The Dielectric Properties of Unmagnetised Warm Dilute Plasma |
|
|
237 | (6) |
|
12.1.1 Plasma Dispersion Relation |
|
|
238 | (1) |
|
12.1.1.1 Dispersion Relation for Transverse Waves |
|
|
239 | (1) |
|
12.1.1.2 Dispersion Relation for Longitudinal Waves |
|
|
239 | (1) |
|
12.1.2 Dielectric Constant of a Plasma |
|
|
239 | (6) |
|
12.1.2.1 The Landau Contour Integration Around the Singularity |
|
|
241 | (2) |
|
|
243 | (1) |
|
|
244 | (1) |
|
12.4 Linear Landau Damping |
|
|
245 | (3) |
|
12.4.1 Resonant Energy Absorption |
|
|
245 | (3) |
|
12.5 Non-linear Landau Damping |
|
|
248 | (4) |
|
|
248 | (2) |
|
12.5.2 Plasma Wave Breaking |
|
|
250 | (2) |
|
12.6 The Plasma Dispersion Function |
|
|
252 | (4) |
|
|
256 | (2) |
|
|
256 | (1) |
|
12.7.2 Longitudinal Waves |
|
|
256 | (2) |
|
12.7.2.1 Plasma Waves, ζe > 1 |
|
|
257 | (1) |
|
12.7.2.2 Ion Waves ζe < 1 |
|
|
257 | (1) |
|
12.8 Microscopic Plasma Instability |
|
|
258 | (4) |
|
|
259 | (3) |
|
12.8.1.1 Penrose's Criterion |
|
|
260 | (2) |
|
12.9 The Dielectric Properties of Warm Dilute Plasma in a Magnetic Field |
|
|
262 | (12) |
|
12.9.1 Propagation Parallel to the Magnetic Field |
|
|
269 | (1) |
|
12.9.2 Propagation Perpendicular to the Magnetic Field |
|
|
270 | (4) |
|
Appendix 12.A Landau's Solution of the Vlasov Equation |
|
|
274 | (2) |
|
Appendix 12.B Electrostatic Waves |
|
|
276 | (5) |
13 Properties of Electro-magnetic Waves in Plasma |
|
281 | (32) |
|
13.1 Plasma Permittivity and the Dielectric Constant |
|
|
281 | (5) |
|
13.1.1 The Properties of the Permittivity Matrix |
|
|
284 | (2) |
|
13.2 Plane Waves in Homogeneous Plasma |
|
|
286 | (4) |
|
13.2.1 Waves in Collisional Cold Plasma |
|
|
287 | (3) |
|
13.2.1.1 Isotropic Unmagnetised Plasma |
|
|
287 | (2) |
|
13.2.1.2 Anisotropic Magnetised Plasma |
|
|
289 | (1) |
|
13.3 Plane Waves Incident Obliquely on a Refractive Index Gradient |
|
|
290 | (5) |
|
13.3.1 Oblique Incidence at a Cut-off Point - Resonance Absorption |
|
|
293 | (2) |
|
|
293 | (1) |
|
|
293 | (2) |
|
13.4 Single Particle Model of Electrons in an Electro-magnetic Field |
|
|
295 | (10) |
|
|
295 | (2) |
|
13.4.2 Ponderomotive Force |
|
|
297 | (1) |
|
13.4.3 The Impact Model for Collisional Absorption |
|
|
298 | (3) |
|
13.4.3.1 Electron-Electron Collisions |
|
|
301 | (1) |
|
13.4.4 Distribution Function of Electrons Subject to Inverse Bremsstrahlung Heating |
|
|
301 | (4) |
|
13.5 Parametric Instabilities |
|
|
305 | (5) |
|
13.5.1 Coupled Wave Interactions |
|
|
305 | (3) |
|
13.5.1.1 Manley-Rowe Relations |
|
|
306 | (1) |
|
13.5.1.2 Parametric Instability |
|
|
307 | (1) |
|
13.5.2 Non-linear Laser-Plasma Absorption |
|
|
308 | (6) |
|
13.5.2.1 Absorption Instabilities |
|
|
309 | (1) |
|
13.5.2.2 Reflection Instabilities |
|
|
310 | (1) |
|
Appendix 13.A Ponderomotive Force |
|
|
310 | (3) |
14 Laser-Plasma Interaction |
|
313 | (24) |
|
|
313 | (1) |
|
14.2 The Classical Hydrodynamic Model of Laser-Solid Breakdown |
|
|
314 | (11) |
|
14.2.1 Basic Parameters of Laser Breakdown |
|
|
315 | (1) |
|
14.2.2 The General Theory of the Interaction of Lasers with Solid Targets |
|
|
316 | (2) |
|
14.2.3 Distributed Heating - Low Intensity, Self-regulating Flow |
|
|
318 | (3) |
|
14.2.3.1 Early Time Self-similar Solution |
|
|
319 | (1) |
|
14.2.3.2 Late Time Steady-State Solution |
|
|
319 | (2) |
|
14.2.4 Local Heating - High Intensity, Deflagration Flow |
|
|
321 | (3) |
|
14.2.4.1 Early Time Thermal Front |
|
|
321 | (2) |
|
14.2.4.2 Late Time Steady-State Flow |
|
|
323 | (1) |
|
14.2.5 Additional Simple Analytic Models |
|
|
324 | (16) |
|
14.2.5.1 Short Pulse Heating |
|
|
324 | (1) |
|
14.2.5.2 Heating of Small Pellets - Homogeneous Self-similar Model |
|
|
325 | (1) |
|
14.3 Simulation of Laser-Solid Target Interaction |
|
|
325 | (2) |
|
Appendix 14.A Non-linear Diffusion |
|
|
327 | (2) |
|
Appendix 14.B Self-similar Flows with Uniform Velocity Gradient |
|
|
329 | (8) |
15 Magnetically Confined Plasma |
|
337 | (34) |
|
|
337 | (1) |
|
15.2 Equilibrium Plasma Configurations |
|
|
337 | (1) |
|
|
338 | (2) |
|
|
340 | (4) |
|
|
341 | (2) |
|
15.4.1.1 Pressure Imbalance Mitigation |
|
|
342 | (1) |
|
15.4.2 Guiding Centre Drift |
|
|
343 | (1) |
|
15.5 The General Problem: The Grad-Shafranov Equation |
|
|
344 | (1) |
|
|
345 | (2) |
|
15.7 Equilibrium Plasma Configurations |
|
|
347 | (4) |
|
15.7.1 Perturbation Methods |
|
|
348 | (1) |
|
15.7.2 Analytical Solutions of the Grad-Shafranov Equation |
|
|
349 | (1) |
|
15.7.3 Numerical Solutions of the Grad-Shafranov Equation |
|
|
350 | (1) |
|
15.8 Classical Magnetic Cross Field Diffusion |
|
|
351 | (1) |
|
15.9 Trapped Particles and Banana Orbits |
|
|
352 | (7) |
|
15.9.1 Collisionless Banana Regime (v 1) |
|
|
354 | (2) |
|
15.9.1.1 Diffusion in the Banana Regime |
|
|
355 | (1) |
|
15.9.1.2 Bootstrap Current (v 1) |
|
|
355 | (1) |
|
15.9.2 Resistive Plasma Diffusion - Collisional Pfirsch-Schluter Regime |
|
|
356 | (1) |
|
15.9.2.1 Pfirsch-Schluter Current (v 1) |
|
|
357 | (1) |
|
15.9.2.2 Diffusion in the Pfirsch-Scluter Regime |
|
|
357 | (1) |
|
|
357 | (1) |
|
15.9.4 Diffusion in Tokamak Plasmas |
|
|
358 | (1) |
|
Appendix 15.A Equilibrium Maintaining 'Vertical' Field |
|
|
359 | (1) |
|
Appendix 15.B Perturbation Solution of the Grad-Shafranov Equation |
|
|
360 | (3) |
|
Appendix 15.C Analytic Solutions of the Homogeneous Grad-Shafranov Equation |
|
|
363 | (1) |
|
Appendix 15.D Guiding Centre Motion in a Twisted Circular Toroidal Plasma |
|
|
364 | (4) |
|
Appendix 15.E The Pfirsch-Schluter Regime |
|
|
368 | (3) |
|
15.E.1 Diffusion in the Pfirsch-Schluter Regime |
|
|
369 | (2) |
16 Instability of an Equilibrium Confined Plasma |
|
371 | (16) |
|
|
371 | (1) |
|
16.2 Ideal MHD Instability |
|
|
371 | (10) |
|
16.2.1 Linearised Stability Equations |
|
|
371 | (4) |
|
16.2.2 Normal Mode Analysis - The Stability of a Cylindrical Plasma Column |
|
|
375 | (4) |
|
16.2.3 m = 0 Sausage Instability |
|
|
379 | (1) |
|
16.2.4 m = 1 Kink Instability |
|
|
380 | (1) |
|
|
381 | (1) |
|
16.4 Interchange Instabilities |
|
|
382 | (5) |
Supplementary Material |
|
387 | (26) |
|
M.1 Breakdown and Discharges in d.c. Electric Fields |
|
|
387 | (6) |
|
M.1.1 Gas Breakdown and Paschen's Law |
|
|
387 | (1) |
|
M.1.2 Similarity and Proper Variables |
|
|
388 | (1) |
|
M.1.3 Townsend's First Coefficient |
|
|
388 | (1) |
|
M.1.4 Townsend's Breakdown Criterion |
|
|
389 | (1) |
|
M.1.5 Paschen Curve and Paschen Minimum |
|
|
389 | (1) |
|
M.1.6 Radial Profile of Glow Discharge |
|
|
390 | (1) |
|
M.1.7 Collisional Ionisation Rate for Low Temperature Electrons |
|
|
391 | (1) |
|
M.1.8 Radio Frequency and Microwave Discharges |
|
|
392 | (1) |
|
M.2 Key Facts Governing Nuclear Fusion |
|
|
393 | (7) |
|
|
393 | (3) |
|
|
396 | (2) |
|
|
398 | (2) |
|
M.3 A Short Introduction to Functions of a Complex Variable |
|
|
400 | (10) |
|
M.3.1 Cauchy-Riemann Relations |
|
|
401 | (1) |
|
|
402 | (1) |
|
|
402 | (1) |
|
M.3.4 Cauchy Integral Theorem |
|
|
402 | (1) |
|
|
403 | (1) |
|
M.3.6 Analytic Continuation |
|
|
403 | (1) |
|
M.3.7 Extension or Contraction of a Contour |
|
|
404 | (1) |
|
M.3.8 Inclusion of Isolated Singularities |
|
|
404 | (1) |
|
|
404 | (1) |
|
|
404 | (1) |
|
|
405 | (1) |
|
M.3.10 Treatment of Improper Integrals |
|
|
405 | (1) |
|
M.3.11 Sokhotski-Plemelj Theorem |
|
|
406 | (1) |
|
M.3.12 Improper Integral Along a Real Line |
|
|
407 | (1) |
|
M.3.13 Taylor and Laurent Series |
|
|
407 | (1) |
|
M.3.14 The Argument Principle |
|
|
408 | (1) |
|
|
408 | (1) |
|
|
409 | (1) |
|
|
409 | (1) |
|
|
410 | (3) |
|
|
410 | (3) |
Problems |
|
413 | (14) |
Bibliography |
|
427 | (10) |
Index |
|
437 | |