Atjaunināt sīkdatņu piekrišanu

E-grāmata: Foundations of Quantum Gravity

(Howard University, Washington DC)
  • Formāts: PDF+DRM
  • Izdošanas datums: 16-May-2013
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781107330795
  • Formāts - PDF+DRM
  • Cena: 160,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 16-May-2013
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781107330795

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Exploring how the subtleties of quantum coherence can be consistently incorporated into Einstein's theory of gravitation, this book is ideal for researchers interested in the foundations of relativity and quantum physics. The book examines those properties of coherent gravitating systems that are most closely connected to experimental observations. Examples of consistent co-gravitating quantum systems whose overall effects upon the geometry are independent of the coherence state of each constituent are provided, and the properties of the trapping regions of non-singular black objects, black holes, and a dynamic de Sitter cosmology are discussed analytically, numerically, and diagrammatically. The extensive use of diagrams to summarise the results of themathematics enables readers to bypass the need for a detailed understanding of the steps involved. Assuming some knowledge of quantum physics and relativity, the book provides textboxes featuring supplementary information for readers particularly interested in the philosophy and foundations of the physics"--

Papildus informācija

Explores how quantum coherence can be consistently incorporated into Einstein's theory of gravitation, for researchers in the foundations of physics.
Preface vii
Notations and Conventions x
Introduction 1(10)
Part I Galilean and special relativity
1 Classical special relativity
11(36)
1.1 Foundations of special relativity
11(12)
1.2 General motions in special relativity
23(13)
1.3 Canonical proper-time dynamics
36(6)
1.4 Conformal space-time diagrams
42(5)
2 Quantum mechanics, classical, and special relativity
47(54)
2.1 Fundamentals of quantum mechanics
47(26)
2.2 Quantum mechanics and statistics
73(11)
2.3 Quantum mechanics and gravity
84(12)
2.4 Thermal properties of acceleration
96(5)
3 Microscopic formulations of particle interactions
101(38)
3.1 Non-perturbative scattering theory
104(2)
3.2 Faddeev formulation of scattering theory
106(4)
3.3 Unitarity, Poincare covariance, and cluster decomposability
110(18)
3.4 Lagrangian dynamics
128(11)
4 Group theory in quantum mechanics
139(66)
4.1 Quantum mechanics and the Galilean group
139(5)
4.2 Quantization conditions on gauge fields
144(4)
4.3 Quantum mechanics and special relativity
148(30)
4.4 Particles and the Poincare group
178(27)
Part II General relativity
5 Fundamentals of general relativity
205(40)
5.1 From special to general relativity
205(15)
5.2 Einstein's equations
220(8)
5.3 Time-independent spherically symmetric solutions
228(13)
5.4 An axially stationary rotating geometry
241(4)
6 Quantum mechanics in curved space-time backgrounds
245(22)
6.1 Quantum coherence and gravity
245(4)
6.2 Lagrangian dynamics of quantum systems
249(7)
6.3 Self-gravitation
256(11)
7 The physics of horizons and trapping regions
267(42)
7.1 Static horizons in Rindler, Schwarzschild, and radially stationary geometries
269(12)
7.2 Dynamic spherically symmetric black holes
281(6)
7.3 Macroscopic co-gravitation of quanta
287(7)
7.4 Temporally transient black objects
294(15)
8 Cosmology
309(36)
8.1 A synopsis of Big Bang cosmology
309(7)
8.2 Dynamic de Sitter cosmology
316(14)
8.3 Co-gravitating quanta on dynamic cosmology
330(2)
8.4 Cosmological fluctuations
332(6)
8.5 Time in cosmology
338(7)
9 Gravitation of interacting systems
345(12)
9.1 A charged geometry
345(5)
9.2 Self-gravitating charged canonical proper-time systems
350(1)
9.3 Gravitation of interacting spinors
351(6)
Appendix A Addendum for
Chapter 1
357(8)
Appendix B Addendum for
Chapter 2
365(4)
Appendix C Addendum for
Chapter 3
369(4)
Appendix D Addendum for
Chapter 4
373(10)
Appendix E Addendum for
Chapter 5
383(4)
Appendix F Addendum for
Chapter 7
387(2)
Appendix G Addendum for
Chapter 8
389(2)
References 391(6)
Index 397
James Lindesay is a Professor of Physics at Howard University, and was the founding Director of the Computational Physics Lab. He has been a visiting professor at Hampton University and Stanford University and a visiting faculty scientist at the Massachusetts Institute of Technology.