Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fourier Restriction for Hypersurfaces in Three Dimensions and Newton Polyhedra

  • Formāts: 272 pages
  • Sērija : Annals of Mathematics Studies
  • Izdošanas datums: 24-May-2016
  • Izdevniecība: Princeton University Press
  • Valoda: eng
  • ISBN-13: 9781400881246
  • Formāts - PDF+DRM
  • Cena: 79,84 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 272 pages
  • Sērija : Annals of Mathematics Studies
  • Izdošanas datums: 24-May-2016
  • Izdevniecība: Princeton University Press
  • Valoda: eng
  • ISBN-13: 9781400881246

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. Isroil Ikromov and Detlef Muller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Muller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept. They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.
Chapter 1 Introduction
1(28)
1.1 Newton Polyhedra Associated with φ, Adapted Coordinates, and Uniform Estimates for Oscillatory Integrals with Phase φ
5(5)
1.2 Fourier Restriction in the Presence of a Linear Coordinate System That Is Adapted to φ
10(1)
1.3 Fourier Restriction When No Linear Coordinate System Is Adapted to φ---the Analytic Case
11(6)
1.4 Smooth Hypersurfaces of Finite Type, Condition (R), and the General Restriction Theorem
17(6)
1.5 An Invariant Description of the Notion of r-Height
23(1)
1.6 Organization of the Monograph and Strategy of Proof
24(5)
Chapter 2 Auxiliary Results
29(21)
2.1 Van der Corput---Type Estimates
30(1)
2.2 Airy-Type Integrals
31(3)
2.3 Integral Estimates of van der Corput Type
34(4)
2.4 Fourier Restriction via Real Interpolation
38(2)
2.5 Uniform Estimates for Families of Oscillatory Sums
40(6)
2.6 Normal Forms of φ under Linear Coordinate Changes When hlin (φ) < 2
46(4)
Chapter 3 Reduction to Restriction Estimates near the Principal Root Jet
50(7)
Chapter 4 Restriction for Surfaces with Linear Height below 2
57(18)
4.1 Preliminary Reductions by Means of Littlewood-Paley Decompositions
58(6)
4.2 Restriction Estimates for Normalized Rescaled Measures When 22j δ3 < 1
64(11)
Chapter 5 Improved Estimates by Means of Airy-Type Analysis
75(30)
5.1 Airy-Type Decompositions Required for Proposition 4.2(c)
76(9)
5.2 The Endpoint in Proposition 4.2(c): Complex Interpolation
85(11)
5.3 Proof of Proposition 4.2(a), (b): Complex Interpolation
96(9)
Chapter 6 The Case When hlin (φ) ≥ 2: Preparatory Results
105(26)
6.1 The First Domain Decomposition
107(2)
6.2 Restriction Estimates in the Transition Domains El When hlin (φ) ≥ 2
109(6)
6.3 Restriction Estimates in the Domains Dl, l < lpr, When hlin (φ) ≥ 2
115(8)
6.4 Restriction Estimates in the Domain Dpr When hlin (φ) ≥ 5
123(2)
6.5 Refined Domain Decomposition of Dpr: The Stopping-Time Algorithm
125(6)
Chapter 7 How to Go beyond the Case hlin (φ) ≥ 5
131(50)
7.1 The Case When hlin (φ) ≥ 2: Reminder of the Open Cases
132(3)
7.2 Restriction Estimates for the Domains D'y(1) Reduction to Normalized Measures vδ
135(3)
7.3 Removal of the Term y2 B--1 bB--1 (y1) in (7.7)
138(3)
7.4 Lower Bounds for hr (φ)
141(2)
7.5 Spectral Localization to Frequency Boxes Where |ξ| ~λi The Case Where Not All λi s Are Comparable
143(8)
7.6 Interpolation Arguments for the Open Cases Where m = 2 and B = 2 or B = 3
151(18)
7.7 The case where λ1 ~λ2 ~λ3
169(9)
7.8 The case where B = 5
178(1)
7.9 Collecting the Remaining Cases
178(1)
7.10 Restriction Estimates for the Domains D'(l), 1 ≥2
179(2)
Chapter 8 The Remaining Cases Where m = 2 and B = 3 or B = 4
181(63)
8.1 Preliminaries
183(2)
8.2 Refined Airy-Type Analysis
185(4)
8.3 The Case Where λρ(δ) < 1
189(8)
8.4 The Case Where m = 2, B = 4, and A = 1
197(7)
8.5 The Case Where m = 2, B = 4, and A = 0
204(8)
8.6 The Case Where m= 2, B= 3, and A= 0: What Still Needs to Be Done
212(5)
8.7 Proof of Proposition 8.12(a): Complex Interpolation
217(16)
8.8 Proof of Proposition 8.12(b): Complex Interpolation
233(11)
Chapter 9 Proofs of Propositions 1.7 and 1.17
244(7)
9.1 Appendix A: Proof of Proposition 1.7 on the Characterization of Linearly Adapted Coordinates
244(1)
9.2 Appendix B: A Direct Proof of Proposition 1.17 on an Invariant Description of the Notion of r-Height
245(6)
Bibliography 251(6)
Index 257
Isroil A. Ikromov is professor of mathematics at Samarkand State University in Uzbekistan. Detlef Muller is professor of mathematics at the University of Kiel in Germany.