Atjaunināt sīkdatņu piekrišanu

Fourier Theory in Optics and Optical Information Processing [Hardback]

  • Formāts: Hardback, 237 pages, height x width: 234x156 mm, weight: 480 g, 10 Tables, black and white; 144 Line drawings, black and white; 9 Halftones, black and white; 153 Illustrations, black and white
  • Sērija : Multidisciplinary and Applied Optics
  • Izdošanas datums: 27-May-2022
  • Izdevniecība: CRC Press
  • ISBN-10: 0367894572
  • ISBN-13: 9780367894573
  • Hardback
  • Cena: 152,25 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 237 pages, height x width: 234x156 mm, weight: 480 g, 10 Tables, black and white; 144 Line drawings, black and white; 9 Halftones, black and white; 153 Illustrations, black and white
  • Sērija : Multidisciplinary and Applied Optics
  • Izdošanas datums: 27-May-2022
  • Izdevniecība: CRC Press
  • ISBN-10: 0367894572
  • ISBN-13: 9780367894573
Fourier analysis is one of the most important concepts when you apply physical ideas to engineering issues. This book provides a comprehensive understanding of Fourier transform and spectral analysis in optics, image processing, and signal processing.

Fourier analysis is one of the most important concepts when you apply physical ideas to engineering issues. This book provides a comprehensive understanding of Fourier transform and spectral analysis in optics, image processing, and signal processing. Written by a world renowned author, this book looks to unify the readers understanding of principles of optics, information processing and measurement. This book describes optical imaging systems through a linear system theory. The book also provides an easy understanding of Fourier transform and system theory in optics. It also provides background of optical measurement and signal processing. Finally, the author also provides a systematic approach to learning many signal processing techniques in optics. The book is intended for researchers, industry professionals, and graduate level students in optics and information processing.
Preface ix
Chapter 1 Light and Waves 1(12)
1.1 Waves and the Wave Equation
1(2)
1.2 Plane Wave
3(3)
1.3 Spherical Wave
6(1)
1.4 Complex Representation of Wave
7(1)
1.5 Principle of Superposition
8(1)
1.6 Scalar Wave and Vector Wave
9(4)
Chapter 2 Interference and Diffraction 13(20)
2.1 Interference
13(2)
2.2 Fringe Visibility
15(1)
2.3 Young's Experiment
16(2)
2.4 Interferometer
18(1)
2.5 Diffraction
18(5)
2.6 Fresnel Diffraction
23(2)
2.7 Fraunhofer Diffraction
25(8)
2.7.1 Rectangular Aperture
27(1)
2.7.2 Circular Aperture
28(1)
2.7.3 Diffraction Grating
29(4)
Chapter 3 Fourier Transform and Convolution 33(30)
3.1 Fourier Series
33(6)
3.2 Optimum Polynomial Approximation
39(1)
3.3 Normalized Orthogonal Polynomials
40(1)
3.4 Fourier Transform
41(1)
3.5 Some Representations of Fourier Transform
42(2)
3.6 Properties of the Fourier Transform
44(3)
3.7 Delta Function
47(2)
3.8 Convolution Integral and Correlation Function
49(3)
3.9 Some Functions and Their Fourier Transforms
52(4)
3.10 Sampling Theory
56(7)
Chapter 4 Linear System 63(8)
4.1 System and Operator
63(1)
4.2 Linear System and Shift-Invariant System
64(2)
4.2.1 Linear System
64(1)
4.2.2 Shift-Invariant System
64(1)
4.2.3 Impulse Response
65(1)
4.3 Frequency Response Function
66(1)
4.4 Eigenfunction and Eigenvalue
67(4)
Chapter 5 Discrete Fourier Transform and Fast Fourier Transform 71(14)
5.1 Discrete Fourier Transform
71(2)
5.2 Window Functions
73(2)
5.3 Principle of Fast Fourier Transform (FFT)
75(3)
5.4 Numerical Calculation Using FFT
78(2)
5.5 Interpolation in DFT
80(5)
5.5.1 Zero Padding
80(2)
5.5.2 Some Other Interpolation Techniques
82(3)
Chapter 6 Fourier Optics 85(20)
6.1 Fresnel Diffraction
85(1)
6.2 Fourier Transform Operation of Lens
86(3)
6.3 Coherent Imaging
89(4)
6.4 Incoherent Imaging
93(1)
6.5 Frequency Response of Optical System
93(2)
6.5.1 Coherent Imaging
93(1)
6.5.2 Incoherent Imaging
94(1)
6.6 Resolving Power
95(1)
6.7 Angular Spectrum Method
96(2)
6.8 Diffraction Based on 3-D Fourier Spectrum
98(7)
Chapter 7 Holography 105(10)
7.1 Conventional Optical Holography
105(2)
7.2 Computer Generated Holography
107(4)
7.2.1 Cell-Oriented CGH
107(2)
7.2.2 Point-Oriented CGH
109(2)
7.2.3 Kinoform
111(1)
7.3 Digital Holography
111(4)
Chapter 8 Optical Computing 115(32)
8.1 Spatial Frequency Filtering
115(5)
8.1.1 Low-Pass and High-Pass Filters
116(1)
8.1.2 Differentiation and Laplacian Filters
117(1)
8.1.3 Phase-Contrast Filter
118(1)
8.1.4 Super Resolution and Apodization
119(1)
8.2 Matched Filter
120(3)
8.3 Optimum Filter for Additive Noise
123(2)
8.4 Optimum Filter for Multiplicative Noise
125(1)
8.5 Spectrum Analyzer
126(2)
8.6 Optical Correlator
128(2)
8.6.1 Space-Integral Type
129(1)
8.6.2 Time-Integral Type
129(1)
8.7 Joint Transform Correlator
130(1)
8.8 Optical Addition and Optical Subtraction
131(3)
8.9 Coordinate Transform
134(2)
8.9.1 Equal Magnification Imaging
135(1)
8.9.2 Logarithmic Coordinate Transform
136(1)
8.10 Mellin Transform
136(2)
8.11 Wavelet Transform
138(2)
8.12 X-Ray Computer Tomography
140(7)
8.12.1 Two-Dimensional Fourier Transform Method
142(1)
8.12.2 Filtered Back Projection Method
142(5)
Chapter 9 Analytic Signal and Hilbert Transform 147(8)
9.1 Complex Representation and Negative Frequency
147(2)
9.2 Analytic Signal
149(1)
9.3 Hilbert Transform
150(5)
Chapter 10 Coherence, Spectroscopy and Fringe Analysis 155(16)
10.1 Coherence
155(5)
10.1.1 Temporal Coherence
157(2)
10.1.2 Spatial Coherence
159(1)
10.2 Fourier Transform Spectroscopy
160(3)
10.3 Phase Shift in Interferometry
163(4)
10.4 Fourier Transform Fringe Analysis
167(1)
10.5 Fringe Analysis by Hilbert Transform
168(3)
Chapter 11 Spatio-Temporal Signal Processing 171(14)
11.1 FemtoSecond Pulse Shaper
171(3)
11.1.1 Function of Grating
171(1)
11.1.2 Diffracted Beam
172(2)
11.2 Spatial Frequency Filtering for Ultra-Short Pulse
174(2)
11.3 Spatio-Temporal Joint Fourier Transform Correlator
176(3)
11.4 Optical Coherence Tomography
179(3)
11.5 Spectral Holography
182(3)
Chapter 12 Wigner Distribution Function 185(12)
12.1 WDF for Spatial Signal
185(3)
12.1.1 Definition and Its Properties
185(2)
12.1.2 WDF in Optical System
187(1)
12.1.2.1 Lens Effect
187(1)
12.1.2.2 Space Propagation
187(1)
12.2 WDF for Spatio-Temporal Signal
188(9)
12.2.1 Extension to Spatio-Temporal Signals
188(2)
12.2.2 Lens Effect in Spatio-Temporal WDF
190(1)
12.2.3 Temporal Phase Modulator (Time Lens)
191(1)
12.2.4 Propagation and Dispersion
191(1)
12.2.5 Diffraction Grating
192(1)
12.2.6 Matrix Representation of WDF Transformation
193(8)
12.2.6.1 Lens
193(1)
12.2.6.2 Temporal Phase Modulation (Time Lens)
193(1)
12.2.6.3 Propagation and Dispersion
194(1)
12.2.6.4 Grating
194(3)
Chapter 13 Fractional Fourier Transform 197(14)
13.1 Definition of Fractional Fourier Transform
197(1)
13.2 Some Representations of Fractional Fourier Transform
197(4)
13.3 Applications to Optical Computing
201(10)
13.3.1 Wiener Filtering
201(1)
13.3.2 Correlator and Matched Filter
202(2)
13.3.3 Joint Fractional Fourier Transform Correlator
204(7)
Appendix A Numerical Calculation of Discrete Fresnel Diffraction 211(4)
Appendix B Numerical Calculation of Fresnel Hologram 215(4)
Solutions to Selected Problems 219(16)
Index 235
Toyohiko Yatagai received BE and PhD in applied physics from the University of Tokyo, in 1969 and 1980, respectively. From 1970 to 1983 he was with Institute of Physical and Chemical Research. He joined the faculty of Institute of Applied Physics, University of Tsukuba in 1983, where he worked on optical instrumentation and optical information processing. In 2007 he moved to Utsunomiya University to launch Center for Optical Research and Education. He is a fellow of SPIE, OSA and JSAP. He was the president of Japan Society of Optics in 2009-2010 and the president of SPIE in 2015. His current research interests include optical measurement, 3-D imaging and display and holographic optical memory.