Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fox and McDonald's Introduction to Fluid Mechanics

3.83/5 (161 ratings by Goodreads)
(Purdue University), (The University of Wisconsin, Madison, Wisconsin), (Purdue University)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 08-Jan-2020
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119603764
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 43,96 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 08-Jan-2020
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119603764
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Through ten editions, Fox and McDonald's Introduction to Fluid Mechanics has helped students understand the physical concepts, basic principles, and analysis methods of fluid mechanics. This market-leading textbook provides a balanced, systematic approach to mastering critical concepts with the proven Fox-McDonald solution methodology. In-depth yet accessible chapters present governing equations, clearly state assumptions, and relate mathematical results to corresponding physical behavior. Emphasis is placed on the use of control volumes to support a practical, theoretically-inclusive problem-solving approach to the subject.

Each comprehensive chapter includes numerous, easy-to-follow examples that illustrate good solution technique and explain challenging points. A broad range of carefully selected topics describe how to apply the governing equations to various problems, and explain physical concepts to enable students to model real-world fluid flow situations. Topics include flow measurement, dimensional analysis and similitude, flow in pipes, ducts, and open channels, fluid machinery, and more. To enhance student learning, the book incorporates numerous pedagogical features including chapter summaries and learning objectives, end-of-chapter problems, useful equations, and design and open-ended problems that encourage students to apply fluid mechanics principles to the design of devices and systems.

Chapter 1 INTRODUCTION
1(14)
1.1 Introduction to Fluid Mechanics
2(2)
Note to Students
2(1)
Scope of Fluid Mechanics
3(1)
Definition of a Fluid
3(1)
1.2 Basic Equations
4(1)
1.3 Methods of Analysis
5(4)
System and Control Volume
6(1)
Differential versus Integral Approach
7(1)
Methods of Description
7(2)
1.4 Dimensions and Units
9(4)
Systems of Dimensions
9(1)
Systems of Units
10(1)
Preferred Systems of Units
11(1)
Dimensional Consistency and "Engineering" Equations
11(2)
1.5 Analysis of Experimental Error
13(1)
1.6 Summary
14(1)
References
14(1)
Chapter 2 FUNDAMENTAL CONCEPTS
15(23)
2.1 Fluid as a Continuum
16(1)
2.2 Velocity Field
17(6)
One-, Two-, and Three-Dimensional Flows
18(1)
Timelines, Pathlines, Streaklines, and Streamlines
19(4)
2.3 Stress Field
23(2)
2.4 Viscosity
25(4)
Newtonian Fluid
26(2)
Non-Newtonian Fluids
28(1)
2.5 Surface Tension
29(1)
2.6 Description and Classification of Fluid Motions
30(6)
Viscous and Inviscid Flows
32(2)
Laminar and Turbulent Flows
34(1)
Compressible and Incompressible Flows
34(1)
Internal and External Flows
35(1)
2.7 Summary and Useful Equations
36(1)
References
37(1)
Chapter 3 FLUID STATICS
38(32)
3.1 The Basic Equation of Fluid Statics
39(3)
3.2 The Standard Atmosphere
42(1)
3.3 Pressure Variation in a Static Fluid
43(7)
Incompressible Liquids: Manometers
43(5)
Gases
48(2)
3.4 Hydrostatic Force on Submerged Surfaces
50(10)
Hydrostatic Force on a Plane Submerged Surface
50(7)
Hydrostatic Force on a Curved Submerged Surface
57(3)
3.5 Buoyancy and Stability
60(3)
3.6 Fluids in Rigid-Body Motion
63(5)
3.7 Summary and Useful Equations
68(1)
References
69(1)
Chapter 4 BASIC EQUATIONS IN INTEGRAL FORM FOR A CONTROL VOLUME
70(58)
4.1 Basic Laws for a System
71(2)
Conservation of Mass
71(1)
Newton's Second Law
72(1)
The Angular-Momentum Principle
72(1)
The First Law of Thermodynamics
72(1)
The Second Law of Thermodynamics
73(1)
4.2 Relation of System Derivatives to the Control Volume Formulation
73(4)
Derivation
74(2)
Physical Interpretation
76(1)
4.3 Conservation of Mass
77(5)
Special Cases
78(4)
4.4 Momentum Equation for Inertial Control Volume
82(17)
Differential Control Volume Analysis
93(4)
Control Volume Moving with Constant Velocity
97(2)
4.5 Momentum Equation for Control Volume with Rectilinear Acceleration
99(6)
4.6 Momentum Equation for Control Volume with Arbitrary Acceleration
105(5)
4.7 The Angular-Momentum Principle
110(8)
Equation for Fixed Control Volume
110(4)
Equation for Rotating Control Volume
114(4)
4.8 The First and Second Laws of Thermodynamics
118(7)
Rate of Work Done by a Control Volume
119(2)
Control Volume Equation
121(4)
4.9 Summary and Useful Equations
125(3)
Chapter 5 INTRODUCTION TO DIFFERENTIAL ANALYSIS OF FLUID MOTION
128(34)
5.1 Conservation of Mass
129(6)
Rectangular Coordinate System
129(4)
Cylindrical Coordinate System
133(2)
5.2 Stream Function for Two-Dimensional Incompressible Flow
135(2)
5.3 Motion of a Fluid Particle (Kinematics)
137(14)
Fluid Translation: Acceleration of a Fluid Particle in a Velocity Field
138(6)
Fluid Rotation
144(3)
Fluid Deformation
147(4)
5.4 Momentum Equation
151(9)
Forces Acting on a Fluid Particle
151(1)
Differential Momentum Equation
152(1)
Newtonian Fluid: Navier--Stokes Equations
152(8)
5.5 Summary and Useful Equations
160(1)
References
161(1)
Chapter 6 INCOMPRESSIBLE INVISCID FLOW
162(40)
6.1 Momentum Equation for Frictionless Flow: Euler's Equation
163(4)
6.2 Bernoulli Equation: Integration of Euler's Equation Along a Streamline for Steady Flow
167(10)
Derivation Using Streamline Coordinates
167(1)
Derivation Using Rectangular Coordinates
168(1)
Static, Stagnation, and Dynamic Pressures
169(2)
Applications
171(5)
Cautions on Use of the Bernoulli Equation
176(1)
6.3 The Bernoulli Equation Interpreted as an Energy Equation
177(4)
6.4 Energy Grade Line and Hydraulic Grade Line
181(2)
6.5 Unsteady Bernoulli Equation: Integration of Euler's Equation Along a Streamline
183(2)
6.6 Irrotational Flow
185(15)
Bernoulli Equation Applied to Irrotational Flow
185(1)
Velocity Potential
186(1)
Stream Function and Velocity Potential for Two-Dimensional, Irrotational, Incompressible Flow: Laplace's Equation
187(2)
Elementary Plane Flows
189(2)
Superposition of Elementary Plane Flows
191(9)
6.7 Summary and Useful Equations
200(1)
References
201(1)
Chapter 7 DIMENSIONAL ANALYSIS AND SIMILITUDE
202(25)
7.1 Nondimensionalizing the Basic Differential Equations
204(2)
7.2 Buckingham Pi Theorem
206(6)
7.3 Significant Dimensionless Groups in Fluid Mechanics
212(2)
7.4 Flow Similarity and Model Studies
214(11)
Incomplete Similarity
216(5)
Scaling with Multiple Dependent Parameters
221(3)
Comments on Model Testing
224(1)
7.5 Summary and Useful Equations
225(1)
References
226(1)
Chapter 8 INTERNAL INCOMPRESSIBLE VISCOUS FLOW
227(66)
8.1 Internal Flow Characteristics
228(2)
Laminar versus Turbulent Flow
228(1)
The Entrance Region
229(1)
Part A Fully Developed Laminar Flow
230(1)
8.2 Fully Developed Laminar Flow Between Infinite Parallel Plates
230(11)
Both Plates Stationary
230(6)
Upper Plate Moving with Constant Speed, U
236(5)
8.3 Fully Developed Laminar Flow in a Pipe
241(4)
Part B Flow in Pipes and Ducts
245(1)
8.4 Shear Stress Distribution in Fully Developed Pipe Flow
246(1)
8.5 Turbulent Velocity Profiles in Fully Developed Pipe Flow
247(4)
8.6 Energy Considerations in Pipe Flow
251(2)
Kinetic Energy Coefficient
252(1)
Head Loss
252(1)
8.7 Calculation of Head Loss
253(10)
Major Losses: Friction Factor
253(5)
Minor Losses
258(4)
Pumps, Fans, and Blowers in Fluid Systems
262(1)
Noncircular Ducts
262(1)
8.8 Solution of Pipe Flow Problems
263(16)
Single-Path Systems
264(12)
Multiple-Path Systems
276(3)
Part C Flow Measurement
279(1)
8.9 Restriction Flow Meters for Internal Flows
279(11)
The Orifice Plate
282(4)
The Flow Nozzle
286(1)
The Venturi
286(1)
The Laminar Flow Element
287(1)
Linear Flow Meters
288(1)
Traversing Methods
289(1)
8.10 Summary and Useful Equations
290(2)
References
292(1)
Chapter 9 EXTERNAL INCOMPRESSIBLE VISCOUS FLOW
293(50)
Part A Boundary Layers
295(1)
9.1 The Boundary Layer Concept
295(4)
9.2 Laminar Flat Plate Boundary Layer: Exact Solution
299(3)
9.3 Momentum Integral Equation
302(4)
9.4 Use of the Momentum Integral Equation for Flow with Zero Pressure Gradient
306(8)
Laminar Row
307(4)
Turbulent Flow
311(3)
9.5 Pressure Gradients in Boundary Layer Flow
314(2)
Part B Fluid Flow About Immersed Bodies
316(1)
9.6 Drag
316(12)
Pure Friction Drag: Flow over a Flat Plate Parallel to the Flow
317(3)
Pure Pressure Drag: Flow over a Flat Plate Normal to the Flow
320(1)
Friction and Pressure Drag: Flow over a Sphere and Cylinder
320(6)
Streamlining
326(2)
9.7 Lift
328(12)
9.8 Summary and Useful Equations
340(2)
References
342(1)
Chapter 10 FLUID MACHINERY
343(71)
10.1 Introduction and Classification of Fluid Machines
344(4)
Machines for Doing Work on a Fluid
344(2)
Machines for Extracting Work (Power) from a Fluid
346(2)
Scope of Coverage
348(1)
10.2 Turbomachinery Analysis
348(10)
The Angular Momentum Principle: The Euler Turbomachine Equation
348(2)
Velocity Diagrams
350(2)
Performance---Hydraulic Power
352(1)
Dimensional Analysis and Specific Speed
353(5)
10.3 Pumps, Fans, and Blowers
358(26)
Application of Euler Turbomachine Equation to Centrifugal Pumps
358(1)
Application of the Euler Equation to Axial Flow Pumps and Fans
359(3)
Performance Characteristics
362(5)
Similarity Rules
367(4)
Cavitation and Net Positive Suction Head
371(3)
Pump Selection: Applications to Fluid Systems
374(6)
Blowers and Fans
380(4)
10.4 Positive Displacement Pumps
384(3)
10.5 Hydraulic Turbines
387(8)
Hydraulic Turbine Theory
387(2)
Performance Characteristics for Hydraulic Turbines
389(6)
10.6 Propellers and Wind Turbines
395(11)
Propellers
395(5)
Wind Turbines
400(6)
10.7 Compressible Flow Turbomachines
406(4)
Application of the Energy Equation to a Compressible Flow Machine
406(1)
Compressors
407(3)
Compressible-Flow Turbines
410(1)
10.8 Summary and Useful Equations
410(2)
References
412(2)
Chapter 11 FLOW IN OPEN CHANNELS
414(46)
11.1 Basic Concepts and Definitions
416(7)
Simplifying Assumptions
416(2)
Channel Geometry
418(1)
Speed of Surface Waves and the Froude Number
419(4)
11.2 Energy Equation for Open-Channel Flows
423(8)
Specific Energy
425(1)
Critical Depth: Minimum Specific Energy
426(5)
11.3 Localized Effect of Area Change (Frictionless Flow)
431(4)
Flow over a Bump
431(4)
11.4 The Hydraulic Jump
435(6)
Depth Increase Across a Hydraulic Jump
438(1)
Head Loss Across a Hydraulic Jump
439(2)
11.5 Steady Uniform Flow
441(10)
The Manning Equation for Uniform Flow
443(5)
Energy Equation for Uniform Flow
448(2)
Optimum Channel Cross Section
450(1)
11.6 Flow with Gradually Varying Depth
451(4)
Calculation of Surface Profiles
452(3)
11.7 Discharge Measurement Using Weirs
455(3)
Suppressed Rectangular Weir
455(1)
Contracted Rectangular Weirs
456(1)
Triangular Weir
456(1)
Broad-Crested Weir
457(1)
11.8 Summary and Useful Equations
458(1)
References
459(1)
Chapter 12 INTRODUCTION TO COMPRESSIBLE FLOW
460(1)
12.1 Review of Thermodynamics
461(6)
12.2 Propagation of Sound Waves
467(6)
Speed of Sound
467(4)
Types of Flow---The Mach Cone
471(2)
12.3 Reference State: Local Isentropic Stagnation Properties
473(7)
Local Isentropic Stagnation Properties for the Flow of an Ideal Gas
474(6)
12.4 Critical Conditions
480(1)
12.5 Basic Equations for One-Dimensional Compressible Row
480(3)
Continuity Equation
481(1)
Momentum Equation
481(1)
First Law of Thermodynamics
481(1)
Second Law of Thermodynamics
482(1)
Equation of State
483(1)
12.6 Isentropic Flow of an Ideal Gas: Area Variation
483(18)
Subsonic Flow, M < 1
485(1)
Supersonic Flow, M > 1
486(1)
Sonic Row, M = 1
486(1)
Reference Stagnation and Critical Conditions for Isentropic Flow of an Ideal Gas
487(5)
Isentropic Flow in a Converging Nozzle
492(4)
Isentropic Flow in a Converging-Diverging Nozzle
496(5)
12.7 Normal Shocks
501(6)
Basic Equations for a Normal Shock
501(2)
Normal-Shock Flow Functions for One-Dimensional Flow of an Ideal Gas
503(4)
12.8 Supersonic Channel Flow with Shocks
507(2)
12.9 Summary and Useful Equations
509(2)
References
511
Problems 1(1)
Appendix A Fluid Property Data 1(12)
Appendix B Videos for Fluid Mechanics 13(2)
Appendix C Selected Performance Curves for Pumps and Fans 15(11)
Appendix D Flow Functions for Computation of Compressible Flow 26(3)
Appendix E Analysis of Experimental Uncertainty 29(6)
Appendix F Introduction to Computational Fluid Dynamics 35
Index 1