Atjaunināt sīkdatņu piekrišanu

Fractals Everywhere 3rd Revised edition [Multiple-component retail product]

4.08/5 (82 ratings by Goodreads)
  • Formāts: Multiple-component retail product, 560 pages, height x width: 229x184 mm, Contains 1 Paperback / softback and 1 CD-ROM
  • Sērija : Dover Books on Mathematics
  • Izdošanas datums: 17-Jul-2012
  • Izdevniecība: Dover Publications Inc.
  • ISBN-10: 0486488705
  • ISBN-13: 9780486488707
Citas grāmatas par šo tēmu:
  • Multiple-component retail product
  • Cena: 49,94 €*
  • * Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena
  • Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena.
  • Daudzums:
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Formāts: Multiple-component retail product, 560 pages, height x width: 229x184 mm, Contains 1 Paperback / softback and 1 CD-ROM
  • Sērija : Dover Books on Mathematics
  • Izdošanas datums: 17-Jul-2012
  • Izdevniecība: Dover Publications Inc.
  • ISBN-10: 0486488705
  • ISBN-13: 9780486488707
Citas grāmatas par šo tēmu:

Focusing on how fractal geometry can be used to model real objects in the physical world, this up-to-date edition features two 16-page full-color inserts, problems and tools emphasizing fractal applications, and an answers section. A bonus CD of an IFS Generator provides an excellent software tool for designing iterated function systems codes and fractal images.



Up-to-date text focuses on how fractal geometry can be used to model real objects in the physical world, with an emphasis on fractal applications. Includes solutions, hints, and a bonus CD.

Introduction to the Dover Edition xi
Foreword to the Second Edition xv
Acknowledgments xvii
Chapter I Introduction
1(4)
Chapter II Metric Spaces; Equivalent Spaces; Classification of Subsets; and the Space of Fractals
5(37)
1 Spaces
5(5)
2 Metric Spaces
10(5)
3 Cauchy Sequences, Limit Points, Closed Sets, Perfect Sets, and Complete Metric Spaces
15(4)
4 Compact Sets, Bounded Sets, Open Sets, Interiors, and Boundaries
19(5)
5 Connected Sets, Disconnected Sets, and Pathwise-Connected Sets
24(3)
6 The Metric Space (H(X), h): The Place Where Fractals Live
27(6)
7 The Completeness of the Space of Fractals
33(7)
8 Additional Theorems about Metric Spaces
40(2)
Chapter III Transformations on Metric Spaces; Contraction Mappings; and the Construction of Fractals
42(73)
1 Transformations on the Real Line
42(7)
2 Affine Transformations in the Euclidean Plane
49(9)
3 Mobius Transformations on the Riemann Sphere
58(3)
4 Analytic Transformations
61(7)
5 How to Change Coordinates
68(6)
6 The Contraction Mapping Theorem
74(5)
7 Contraction Mappings on the Space of Fractals
79(5)
8 Two Algorithms for Computing Fractals from Iterated Function Systems
84(7)
9 Condensation Sets
91(3)
10 How to Make Fractal Models with the Help of the Collage Theorem
94(7)
11 Blowing in the Wind: The Continous Dependence of Fractals on Parameters
101(14)
Chapter IV Chaotic Dynamics on Fractals
115(56)
1 The Addresses of Points on Fractals
115(7)
2 Continuous Transformations from Code Space to Fractals
122(8)
3 Introduction to Dynamical Systems
130(10)
4 Dynamics on Fractals: Or How to Compute Orbits by Looking at Pictures
140(5)
5 Equivalent Dynamical Systems
145(4)
6 The Shadow of Deterministic Dynamics
149(9)
7 The Meaningfulness of Inaccurately Computed Orbits is Established by Means of a Shadowing Theorem
158(6)
8 Chaotic Dynamics on Fractals
164(7)
Chapter V Fractal Dimension
171(34)
1 Fractal Dimension
171(9)
2 The Theoretical Determination of the Fractal Dimension
180(8)
3 The Experimental Determination of the Fractal Dimension
188(7)
4 The Hausdorff-Besicovitch Dimension
195(10)
Chapter VI Fractal Interpolation
205(41)
1 Introduction: Applications for Fractal Functions
205(3)
2 Fractal Interpolation Functions
208(15)
3 The Fractal Dimension of Fractal Interpolation Functions
223(6)
4 Hidden Variable Fractal Interpolation
229(9)
5 Space-Filling Curves
238(8)
Chapter VII Julia Sets
246(48)
1 The Escape Time Algorithm for Computing Pictures of IFS Attractors and Julia Sets
246(20)
2 Iterated Function Systems Whose Attractors Are Julia Sets
266(10)
3 The Application of Julia Set Theory to Newton's Method
276(11)
4 A Rich Source for Fractals: Invariant Sets of Continuous Open Mappings
287(7)
Chapter VIII Parameter Spaces and Mandelbrot Sets
294(36)
1 The Idea of a Parameter Space: A Map of Fractals
294(5)
2 Mandelbrot Sets for Pairs of Transformations
299(10)
3 The Mandelbrot Set for Julia Sets
309(8)
4 How to Make Maps of Families of Fractals Using Escape Times
317(13)
Chapter IX Measures on Fractals
330(49)
1 Introduction to Invariant Measures on Fractals
330(7)
2 Fields and Sigma-Fields
337(4)
3 Measures
341(3)
4 Integration
344(5)
5 The Compact Metric Space (P(X), d)
349(1)
6 A Contraction Mapping on (P(X))
350(14)
7 Elton's Theorem
364(6)
8 Application to Computer Graphics
370(9)
Chapter X Recurrent Iterated Function Systems
379(33)
1 Fractal Systems
379(4)
2 Recurrent Iterated Function Systems
383(9)
3 Collage Theorem for Recurrent Iterated Function Systems
392(11)
4 Fractal Systems with Vectors of Measures as Their Attractors
403(6)
5 References
409(3)
References 412(4)
Selected Answers 416(107)
Index 523(10)
Credits for Figures and Color Plates 533