Atjaunināt sīkdatņu piekrišanu

Fractals in the Natural Sciences [Mīkstie vāki]

Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 208 pages, height x width: 229x152 mm, weight: 28 g
  • Sērija : Princeton Legacy Library
  • Izdošanas datums: 14-Jul-2014
  • Izdevniecība: Princeton University Press
  • ISBN-10: 0691605475
  • ISBN-13: 9780691605470
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 54,72 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 208 pages, height x width: 229x152 mm, weight: 28 g
  • Sērija : Princeton Legacy Library
  • Izdošanas datums: 14-Jul-2014
  • Izdevniecība: Princeton University Press
  • ISBN-10: 0691605475
  • ISBN-13: 9780691605470
Citas grāmatas par šo tēmu:

In the words of B. B. Mandelbrot's contribution to this important collection of original papers, fractal geometry is a "new geometric language, which is geared towards the study of diverse aspects of diverse objects, either mathematical or natural, that are not smooth, but rough and fragmented to the same degree at all scales." This book will be of interest to all physical and biological scientists studying these phenomena. It is based on a Royal Society discussion meeting held in 1988.

Originally published in 1990.

The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Fractal geometry what is it, and what does it do?
3(14)
B. B. Mandelbrot
Discussion
16(1)
A. Blumen
Fractals, phase transitions and criticality
17(18)
R. B. Stinchcombe
Discussion
33(2)
E. Courtens
Fractals and phase separation
35(20)
D. W. Schaefer
B. C. Bunker
J. P. Wilcoxon
Discussion
51(4)
J. S. Rowlinson
R. C. Ball
D. J. Tildesley
Experiments on the structure and vibrations of fractal solids
55(16)
E. Courtens
R. Vacher
Universality of fractal aggregates as probed by light scattering
71(18)
M. Y. Lin
H. M. Lindsay
D. A. Weitz
R. C. Ball
R. Klein
P. Meakin
Light-scattering studies of aggregation
89(14)
J. G. Rarity
R. N. Seabrook
R. J. G. Carr
Discussion
101(2)
D. A. Weitz
Time-series analysis
103(20)
D. S. Broomhead
R. Jones
Diffusion-controlled growth
123(10)
R. C. Ball
M. J. Blunt
O. Rath Spivack
Discussion
132(1)
J. S. Rowlinson
Diffusion-limited aggregation
133(16)
P. Meakin
Susan Tolman
Discussion
147(2)
A. Blumen
Electrodeposition in support: concentration gradients, an ohmic model and the genesis of branching fractals
149(10)
P. Meakin
Susan Tolman
Discussion
158(1)
R. C. Ball
Flow through porous media: limits of fractal patterns
159(10)
R. Lenormand
Fractal BET and FHH theories of adsorption: a comparative study
169(20)
P. Pfeifer
M. Obert
M. W. Cole
Reactions in and on fractal media
189
A. Blumen
G. H. Kohler
Discussion
199
D. W. Schaefer