Preface |
|
xv | |
Acknowledgments |
|
xix | |
About the Companion Website |
|
xxi | |
1 Introduction |
|
1 | (8) |
|
|
2 | (1) |
|
1.2 The Fractional Integral and Derivative |
|
|
3 | (3) |
|
1.2.1 Grunwald Definition |
|
|
3 | (1) |
|
1.2.2 Riemann-Liouville Definition |
|
|
4 | (1) |
|
1.2.3 The Nature of the Fractional-Order Operator |
|
|
5 | (1) |
|
1.3 The Traditional Trigonometry |
|
|
6 | (2) |
|
|
8 | (1) |
|
1.5 Expectations of a Generalized Trigonometry and Hyperboletry |
|
|
8 | (1) |
2 The Fractional Exponential Function via the Fundamental Fractional Differential Equation |
|
9 | (10) |
|
2.1 The Fundamental Fractional Differential Equation |
|
|
9 | (1) |
|
2.2 The Generalized Impulse Response Function |
|
|
10 | (1) |
|
2.3 Relationship of the F-function to the Mittag-Leffler Function |
|
|
11 | (1) |
|
2.4 Properties of the F-Function |
|
|
12 | (1) |
|
2.5 Behavior of the F-Function as the Parameter a Varies |
|
|
13 | (3) |
|
|
16 | (3) |
3 The Generalized Fractional Exponential Function: The R-Function and Other Functions for the Fractional Calculus |
|
19 | (28) |
|
|
19 | (1) |
|
3.2 Functions for the Fractional Calculus |
|
|
19 | (3) |
|
3.2.1 Mittag-Leffler's Function |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
3.2.4 Oldham and Spanier's, Hartley's, and Matignon's Function |
|
|
20 | (1) |
|
3.2.5 Robotnov's Function |
|
|
21 | (1) |
|
3.2.6 Miller and Ross's Function |
|
|
21 | (1) |
|
3.2.7 Gorenflo and Mainardi's, and Podlubny's Function |
|
|
21 | (1) |
|
3.3 The R-Function: A Generalized Function |
|
|
22 | (1) |
|
3.4 Properties of the Rqv(a, t)-Function |
|
|
23 | (4) |
|
3.4.1 Differintegration of the R-Function |
|
|
23 | (2) |
|
3.4.2 Relationship Between Rq,mq and Rq,o |
|
|
25 | (2) |
|
3.4.3 Fractional-Order Impulse Function |
|
|
27 | (1) |
|
3.5 Relationship of the R-Function to the Elementary Functions |
|
|
27 | (2) |
|
3.5.1 Exponential Function |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
3.5.4 Hyperbolic Sine and Cosine |
|
|
28 | (1) |
|
3.6 R-Function Identities |
|
|
29 | (2) |
|
3.6.1 Trigonometric-Based Identities |
|
|
29 | (1) |
|
|
30 | (1) |
|
3.7 Relationship of the R-Function to the Fractional Calculus Functions |
|
|
31 | (1) |
|
3.7.1 Mittag-Leffler's Function |
|
|
31 | (1) |
|
|
31 | (1) |
|
|
31 | (1) |
|
3.7.4 Oldham and Spanier's, and Hartley's Function |
|
|
31 | (1) |
|
3.7.5 Miller and Ross's Function |
|
|
32 | (1) |
|
3.7.6 Robotnov's Function |
|
|
32 | (1) |
|
3.7.7 Gorenflo and Mainardi's, and Podlubny's Function |
|
|
32 | (1) |
|
3.8 Example: Cooling Manifold |
|
|
32 | (2) |
|
3.9 Further Generalized Functions: The G-Function and the H-Function |
|
|
34 | (4) |
|
|
34 | (2) |
|
|
36 | (2) |
|
3.10 Preliminaries to the Fractional Trigonometry Development |
|
|
38 | (1) |
|
3.11 Eigen Character of the R-Function |
|
|
38 | (1) |
|
3.12 Fractional Differintegral of the TimeScaled R-Function |
|
|
39 | (1) |
|
3.13 R-Function Relationships |
|
|
39 | (1) |
|
3.14 Roots of Complex Numbers |
|
|
40 | (1) |
|
3.15 Indexed Forms of the R-Function |
|
|
41 | (3) |
|
3.15.1 R-Function with Complex Argument |
|
|
41 | (1) |
|
3.15.2 Indexed Forms of the R-Function |
|
|
42 | (37) |
|
|
42 | (1) |
|
|
43 | (1) |
|
3.16 Term-by-Term Operations |
|
|
44 | (2) |
|
|
46 | (1) |
4 R-Function Relationships |
|
47 | (16) |
|
|
47 | (1) |
|
4.2 Relationships for Rm,o in Terms of R1,o |
|
|
48 | (2) |
|
4.3 Relationships for R1/m,o in Terms of R1,o |
|
|
50 | (1) |
|
4.4 Relationships for the Rational Form Rm/p,o in Terms of R1p,o |
|
|
51 | (2) |
|
4.5 Relationships for R1/po in Terms of Rm/p,o |
|
|
53 | (1) |
|
4.6 Relating Rm/p,o to the Exponential Function R1,o(b, t) = ebt |
|
|
54 | (2) |
|
4.7 Inverse Relationships-Relationships for R1,o in Terms of Rm,k |
|
|
56 | (1) |
|
4.8 Inverse Relationships-Relationships for R1,o in Terms of R1/m,o |
|
|
57 | (2) |
|
4.9 Inverse Relationships-Relationships for eat = R1,o(a, t) in Terms of Rm/p,o |
|
|
59 | (2) |
|
|
61 | (2) |
5 The Fractional Hyperboletry |
|
63 | (16) |
|
5.1 The Fractional R1-Hyperbolic Functions |
|
|
63 | (9) |
|
5.2 R1-Hyperbolic Function Relationship |
|
|
72 | (1) |
|
5.3 Fractional Calculus Operations on the R1-Hyperbolic Functions |
|
|
72 | (1) |
|
5.4 Laplace Transforms of the R1-Hyperbolic Functions |
|
|
73 | (1) |
|
5.5 Complexity-Based Hyperbolic Functions |
|
|
73 | (1) |
|
5.6 Fractional Hyperbolic Differential Equations |
|
|
74 | (2) |
|
|
76 | (1) |
|
|
77 | (2) |
6 The R1-Fractional Trigonometry |
|
79 | (18) |
|
6.1 R1-Trigonometric Functions |
|
|
79 | (9) |
|
6.1.1 R1-Trigonometric Properties |
|
|
81 | (7) |
|
6.2 R1-Trigonometric Function Interrelationship |
|
|
88 | (1) |
|
6.3 Relationships to R1-Hyperbolic Functions |
|
|
89 | (1) |
|
6.4 Fractional Calculus Operations on the R1-Trigonometric Functions |
|
|
89 | (1) |
|
6.5 Laplace Transforms of the R1-Trigonometric Functions |
|
|
90 | (2) |
|
6.5.1 Laplace Transform of R1 Cosq,v(a, k, t) |
|
|
90 | (1) |
|
6.5.2 Laplace Transform of R1Sinq,v(a, k, t) |
|
|
91 | (1) |
|
6.6 Complexity-Based R1-Trigonometric Functions |
|
|
92 | (2) |
|
6.7 Fractional Differential Equations |
|
|
94 | (3) |
7 The R2-Fractional Trigonometry |
|
97 | (32) |
|
7.1 R2-Trigonometric Functions: Based on Real and Imaginary Parts |
|
|
97 | (5) |
|
7.2 R2-Trigonometric Functions: Based on Parity |
|
|
102 | (9) |
|
7.3 Laplace Transforms of the R2-Trigonometric Functions |
|
|
111 | (2) |
|
|
111 | (1) |
|
|
112 | (1) |
|
7.3.3 L{R2Coflq,v(a, k, t)} |
|
|
113 | (1) |
|
7.3.4 L{R2Flutq,v(a, k, t)) |
|
|
113 | (1) |
|
7.3.5 L{R2Covibq,v(a, k, t)} |
|
|
113 | (1) |
|
7.3.6 L{R2Vibq,v(a, k, t)} |
|
|
113 | (1) |
|
7.4 R2-Trigonometric Function Relationships |
|
|
113 | (6) |
|
7.4.1 R2Cosq,v(a, k, t) and R2Sinq,v(a, k, t) Relationships and Fractional Euler Equation |
|
|
114 | (2) |
|
7.4.2 R2Rotq,v(a, t) and R2Corq,v (a, t) Relationships |
|
|
116 | (1) |
|
7.4.3 R2Coflq,v(a, t) and R2Flutq,v(a, t) Relationships |
|
|
116 | (2) |
|
7.4.4 R2Covibq,v(a, t) and R2Vibq,v(a, t) Relationships |
|
|
118 | (1) |
|
7.5 Fractional Calculus Operations on the R2-Trigonometric Functions |
|
|
119 | (8) |
|
|
119 | (2) |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
123 | (1) |
|
7.5.7 R2Covibq,v(a, k, t) |
|
|
123 | (1) |
|
|
124 | (1) |
|
7.5.9 Summary of Fractional Calculus Operations on the R2-Trigonometric Functions |
|
|
124 | (3) |
|
7.6 Inferred Fractional Differential Equations |
|
|
127 | (2) |
8 The R3-Trigonometric Functions |
|
129 | (30) |
|
8.1 The R3-Trigonometric Functions: Based on Complexity |
|
|
129 | (5) |
|
8.2 The R3-Trigonometric Functions: Based on Parity |
|
|
134 | (6) |
|
8.3 Laplace Transforms of the R3-Trigonometric Functions |
|
|
140 | (1) |
|
8.4 R3 -Trigonometric Function Relationships |
|
|
141 | (5) |
|
8.4.1 R3Cosq,v (a, t) and R3Sinq,v(a, t) Relationships and Fractional Euler Equation |
|
|
142 | (1) |
|
8.4.2 R3Rotq,v(a, t) and R3Corq,v(a, t) Relationships |
|
|
143 | (1) |
|
8.4.3 R3Coflq,v(a, t) and R3Flutq,v,(a, t) Relationships |
|
|
144 | (1) |
|
8.4.4 R3Covibq,v(a, t) and R3Vibq,v(a, t) Relationships |
|
|
145 | (1) |
|
8.5 Fractional Calculus Operations on the R3-Trigonometric Functions |
|
|
146 | (13) |
|
|
146 | (2) |
|
|
148 | (1) |
|
|
149 | (1) |
|
|
150 | (1) |
|
8.5.5 R3Coflutq,v(a, k, t) |
|
|
150 | (2) |
|
|
152 | (1) |
|
8.5.7 R3Covibq,v(a, k, t) |
|
|
153 | (1) |
|
|
154 | (3) |
|
8.5.9 Summary of Fractional Calculus Operations on the R3-Trigonometric Functions |
|
|
157 | (2) |
9 The Fractional Meta-Trigonometry |
|
159 | (58) |
|
9.1 The Fractional Meta-Trigonometric Functions: Based on Complexity |
|
|
160 | (6) |
|
|
161 | (1) |
|
9.1.2 Graphical Presentation-Complexity Functions |
|
|
161 | (5) |
|
9.2 The Meta-Fractional Trigonometric Functions: Based on Parity |
|
|
166 | (13) |
|
9.3 Commutative Properties of the Complexity and Parity Operations |
|
|
179 | (9) |
|
9.3.1 Graphical Presentation- Parity Functions |
|
|
181 | (7) |
|
9.4 Laplace Transforms of the Fractional Meta-Trigonometric Functions |
|
|
188 | (4) |
|
9.5 R-Function Representation of the Fractional Meta-Trigonometric Functions |
|
|
192 | (3) |
|
9.6 Fractional Calculus Operations on the Fractional Meta-Trigonometric Functions |
|
|
195 | (11) |
|
9.6.1 Cosq,v(a, alpha, beta, k, t) |
|
|
195 | (2) |
|
9.6.2 Sinq,v(a, alpha, beta, k, t) |
|
|
197 | (1) |
|
9.6.3 Corq,v(a, alpha, beta, t) |
|
|
198 | (1) |
|
9.6.4 Rotq,v(a, alpha, beta, t) |
|
|
198 | (1) |
|
9.6.5 Coflutq,v(a, alpha , beta, k, t) |
|
|
199 | (1) |
|
9.6.6 Flutq,v(a, alpha, beta, k, t) |
|
|
200 | (2) |
|
9.6.7 Covibq,v(a, alpha, beta k, t) |
|
|
202 | (1) |
|
9.6.8 Vikq,v(a, alpha, beta, k, t) |
|
|
203 | (1) |
|
9.6.9 Summary of Fractional Calculus Operations on the Meta-Trigonometric Functions |
|
|
204 | (2) |
|
9.7 Special Topics in Fractional Differintegration |
|
|
206 | (1) |
|
9.8 Meta-Trigonometric Function Relationships |
|
|
206 | (8) |
|
9.8.1 Cosq,v(a, alpha, beta, t) and Sinq,v(a, alpha, beta, t) Relationships |
|
|
206 | (1) |
|
9.8.2 Corq,v(a, alpha, beta, t) and Rotq,v(a, alpha, beta, t) Relationships |
|
|
207 | (1) |
|
9.8.3 Covibq,v(a, alpha, beta, t) and Vibq,v(a, alpha, beta, t) Relationships |
|
|
208 | (1) |
|
9.8.4 Coflq,v(a, alpha, beta, t) and Flutq,v(a, alpha,beta, t) Relationships |
|
|
208 | (1) |
|
9.8.5 Coflq,v(a, alpha, beta, t) and Vibq,v(a, alpha, beta, t) Relationships |
|
|
209 | (2) |
|
9.8.6 Cosq,v(a, alpha, beta, t) and Sinq,v(a, alpha, beta, t) Relationships to Other Functions |
|
|
211 | (1) |
|
9.8.7 Meta-Identities Based on the Integer-order Trigonometric Identities |
|
|
211 | (35) |
|
9.8.7.1 The cos(-x) = cos(x)-Based Identity for Cosq,v(a, alpha, beta, t) |
|
|
211 | (1) |
|
9.8.7.2 The sin(-x) = - sin(x)-Based Identity for Sinq,v(a, alpha, beta, t) |
|
|
212 | (1) |
|
9.8.7.3 The Cosv(a, alpha, beta, t)<=> Sinq,v(a, alpha, beta, t) Identity |
|
|
212 | (1) |
|
9.8.7.4 The sin(x) = sin(x ± mpi/2)-Based Identity for Sinq,v(a, alpha, beta, t) |
|
|
213 | (1) |
|
9.9 Fractional Poles: Structure of the Laplace Transforms |
|
|
214 | (1) |
|
9.10 Comments and Issues Relative to the Meta-Trigonometric Functions |
|
|
214 | (1) |
|
9.11 Backward Compatibility to Earlier Fractional Trigonometries |
|
|
215 | (1) |
|
|
215 | (2) |
10 The Ratio and Reciprocal Functions |
|
217 | (12) |
|
10.1 Fractional Complexity Functions |
|
|
217 | (2) |
|
10.2 The Parity Reciprocal Functions |
|
|
219 | (2) |
|
10.3 The Parity Ratio Functions |
|
|
221 | (4) |
|
10.4 R-Function Representation of the Fractional Ratio and Reciprocal Functions |
|
|
225 | (1) |
|
|
226 | (1) |
|
|
227 | (2) |
11 Further Generalized Fractional Trigonometries |
|
229 | (12) |
|
11.1 The G-Function-Based Trigonometry |
|
|
229 | (1) |
|
11.2 Laplace Transforms for the G-Trigonometric Functions |
|
|
230 | (4) |
|
11.3 The H-Function-Based Trigonometry |
|
|
234 | (1) |
|
11.4 Laplace Transforms for the H-Trigonometric Functions |
|
|
235 | (6) |
Introduction to Applications |
|
241 | (2) |
12 The Solution of Linear Fractional Differential Equations Based on the Fractional Trigonometry |
|
243 | (16) |
|
12.1 Fractional Differential Equations |
|
|
243 | (2) |
|
12.2 Fundamental Fractional Differential Equations of the First Kind |
|
|
245 | (1) |
|
12.3 Fundamental Fractional Differential Equations of the Second Kind |
|
|
246 | (1) |
|
12.4 Preliminaries-Laplace Transforms |
|
|
246 | (4) |
|
12.4.1 Fractional Cosine Function |
|
|
246 | (2) |
|
12.4.2 Fractional Sine Function |
|
|
248 | (1) |
|
12.4.3 Higher-Order Numerator Dynamics |
|
|
248 | (1) |
|
12.4.3.1 Fractional Cosine Function |
|
|
248 | (1) |
|
12.4.3.2 Fractional Sine Function |
|
|
248 | (1) |
|
12.4.4 Parity Functions-The Flutter Function |
|
|
249 | (1) |
|
12.4.5 Additional Transform Pairs |
|
|
250 | (1) |
|
12.5 Fractional Differential Equations of Higher Order: Unrepeated Roots |
|
|
250 | (2) |
|
12.6 Fractional Differential Equations of Higher Order: Containing Repeated Roots |
|
|
252 | (1) |
|
12.6.1 Repeated Real Fractional Roots |
|
|
252 | (1) |
|
12.6.2 Repeated Complex Fractional Roots |
|
|
253 | (1) |
|
12.7 Fractional Differential Equations Containing Repeated Roots |
|
|
253 | (1) |
|
12.8 Fractional Differential Equations of Non-Commensurate Order |
|
|
254 | (1) |
|
12.9 Indexed Fractional Differential Equations: Multiple Solutions |
|
|
255 | (1) |
|
|
256 | (3) |
13 Fractional Trigonometric Systems |
|
259 | (12) |
|
13.1 The R-Function as a Linear System |
|
|
259 | (1) |
|
13.2 R-System Time Responses |
|
|
260 | (1) |
|
13.3 R-Function-Based Frequency Responses |
|
|
260 | (1) |
|
13.4 Meta-Trigonometric Function-Based Frequency Responses |
|
|
261 | (3) |
|
13.5 Fractional Meta-Trigonometry |
|
|
264 | (2) |
|
13.6 Elementary Fractional Transfer Functions |
|
|
266 | (1) |
|
|
266 | (1) |
|
13.8 Stability of Elementary Fractional Transfer Functions |
|
|
267 | (1) |
|
13.9 Insights into the Behavior of the Fractional Meta-Trigonometric Functions |
|
|
268 | (2) |
|
13.9.1 Complexity Function Stability |
|
|
268 | (1) |
|
13.9.2 Parity Function Stability |
|
|
269 | (1) |
|
|
270 | (1) |
14 Numerical Issues and Approximations in the Fractional Trigonometry |
|
271 | (12) |
|
14.1 R-Function Convergence |
|
|
271 | (1) |
|
14.2 The Meta-Trigonometric Function Convergence |
|
|
272 | (1) |
|
|
273 | (1) |
|
14.4 Numerical Issues in the Fractional Trigonometry |
|
|
274 | (1) |
|
14.5 The R2 COS- and R2Sin-Function Asymptotic Behavior |
|
|
275 | (1) |
|
14.6 R-Function Approximations |
|
|
276 | (3) |
|
14.7 The Near-Order Effect |
|
|
279 | (2) |
|
14.8 High-Precision Software |
|
|
281 | (2) |
15 The Fractional Spiral Functions: Further Characterization of the Fractional Trigonometry |
|
283 | (26) |
|
15.1 The Fractional Spiral Functions |
|
|
283 | (5) |
|
|
288 | (15) |
|
15.2.1 Descriptions of Spirals |
|
|
288 | (6) |
|
15.2.1.1 Polar Description |
|
|
289 | (1) |
|
15.2.1.2 Parametric Description |
|
|
290 | (3) |
|
|
293 | (1) |
|
15.2.1.4 Alternate Definitions |
|
|
294 | (1) |
|
|
294 | (1) |
|
15.2.2 Spiral Length and Growth/Decay Rates |
|
|
294 | (2) |
|
|
294 | (1) |
|
15.2.2.2 Spiral Growth Rates for ccw Spirals |
|
|
295 | (1) |
|
15.2.2.3 Component Growth Rates |
|
|
296 | (1) |
|
15.2.3 Scaling of Spirals |
|
|
296 | (3) |
|
15.2.3.1 Uniform Rectangular Scaling |
|
|
297 | (1) |
|
15.2.3.2 Nonuniform Rectangular Scaling |
|
|
297 | (1) |
|
|
298 | (1) |
|
|
298 | (1) |
|
|
298 | (1) |
|
|
299 | (2) |
|
15.2.5 Referenced Spirals: Retardation |
|
|
301 | (2) |
|
15.3 Relation to the Classical Spirals |
|
|
303 | (4) |
|
|
303 | (4) |
|
|
307 | (2) |
16 Fractional Oscillators |
|
309 | (8) |
|
16.1 The Space of Linear Fractional Oscillators |
|
|
309 | (5) |
|
16.1.1 Complexity Function-Based Oscillators |
|
|
310 | (1) |
|
16.1.2 Parity Function-Based Oscillators |
|
|
311 | (1) |
|
16.1.3 Intrinsic Oscillator Damping |
|
|
312 | (2) |
|
16.2 Coupled Fractional Oscillators |
|
|
314 | (3) |
17 Shell Morphology and Growth |
|
317 | (24) |
|
|
317 | (12) |
|
|
317 | (1) |
|
17.1.2 Nautilus Morphology |
|
|
318 | (7) |
|
17.1.2.1 Fractional Differential Equations |
|
|
323 | (2) |
|
|
325 | (1) |
|
17.1.4 Morphology of the Siphuncle Spiral |
|
|
325 | (1) |
|
17.1.5 Fractional Growth Rate |
|
|
325 | (3) |
|
17.1.6 Nautilus Study Summary |
|
|
328 | (1) |
|
|
329 | (1) |
|
|
330 | (2) |
|
|
332 | (1) |
|
|
332 | (4) |
|
|
336 | (1) |
|
|
336 | (3) |
|
|
339 | (1) |
|
|
340 | (1) |
18 Mathematical Classification of the Spiral and Ring Galaxy Morphologies |
|
341 | (30) |
|
|
341 | (1) |
|
18.2 Background-Fractional Spirals for Galactic Classification |
|
|
342 | (5) |
|
18.3 Classification Process |
|
|
347 | (3) |
|
18.3.1 Symmetry Assumption |
|
|
347 | (1) |
|
18.3.2 Galaxy Image to Spiral or Spiral to Galaxy Image |
|
|
347 | (1) |
|
|
347 | (1) |
|
|
348 | (2) |
|
18.4 Mathematical Classification of Selected Galaxies |
|
|
350 | (12) |
|
|
350 | (1) |
|
18.4.2 NGC 1365 SBb/SBc/SB(s)b/SBb(s) |
|
|
350 | (1) |
|
18.4.3 M95 SB(r)b/SBb(r)/SBa/SBb |
|
|
350 | (3) |
|
18.4.4 NGC 2997 Sc/SAB(rs)c/Sc(s) |
|
|
353 | (1) |
|
18.4.5 NGC 4622 (R')SA(r)a pec/Sb |
|
|
353 | (1) |
|
18.4.6 M 66 or NGC 3627 SAB(s)b/Sb(s)/Sb |
|
|
353 | (2) |
|
18.4.7 NGC 4535 SAB(s)c/SB(s)c/Sc/SBc |
|
|
355 | (1) |
|
18.4.8 NGC 1300 SBc/SBb(s)/SB(rs)bc |
|
|
355 | (3) |
|
|
358 | (1) |
|
|
358 | (1) |
|
18.4.11 AM 0644-741 Sc/Strongly peculiar/ |
|
|
359 | (1) |
|
18.4.12 ESO 269-G57 (R')SAB(r)ab/Sa(r) |
|
|
360 | (2) |
|
18.4.13 NGC 1313 SBc/SB(s)d/SB(s)d |
|
|
362 | (1) |
|
|
362 | (1) |
|
|
362 | (5) |
|
18.5.1 Fractional Differential Equations |
|
|
366 | (1) |
|
18.5.2 Alternate Classification Basis |
|
|
366 | (1) |
|
|
367 | (3) |
|
|
368 | (2) |
|
18.7 Appendix: Carbon Star |
|
|
370 | (1) |
|
18.7.1 Carbon Star AFGL 3068 (IRAS 23166 + 1655) |
|
|
370 | (1) |
19 Hurricanes, Tornados, and Whirlpools |
|
371 | (10) |
|
19.1 Hurricane Cloud Patterns |
|
|
371 | (2) |
|
|
371 | (1) |
|
|
371 | (2) |
|
19.2 Tornado Classification |
|
|
373 | (2) |
|
|
374 | (1) |
|
19.2.2 Tornado Morphology Animation |
|
|
374 | (1) |
|
19.2.3 Tornado Morphology Classification |
|
|
375 | (1) |
|
19.3 Low-Pressure Cloud Pattern |
|
|
375 | (1) |
|
|
375 | (4) |
|
19.5 Order in Physical Systems |
|
|
379 | (2) |
20 A Look Forward |
|
381 | (8) |
|
20.1 Properties of the R-Function |
|
|
382 | (1) |
|
|
382 | (2) |
|
20.3 The Generalized Fractional Trigonometries |
|
|
384 | (1) |
|
20.4 Extensions to Negative Time, Complementary Trigonometries, and Complex Arguments |
|
|
384 | (1) |
|
20.5 Applications: Fractional Field Equations |
|
|
385 | (2) |
|
20.6 Fractional Spiral and Nonspiral Properties |
|
|
387 | (1) |
|
20.7 Numerical Improvements for Evaluation to Larger Values of atq |
|
|
387 | (1) |
|
|
388 | (1) |
A Related Works |
|
389 | (4) |
|
|
389 | (1) |
|
|
389 | (1) |
|
A.3 West, Bologna, and Grigolini |
|
|
390 | (1) |
|
A.4 Mittag-Leffler-Based Fractional Trigonometric Functions |
|
|
390 | (1) |
|
A.5 Relationship to Current Work |
|
|
391 | (2) |
B Computer Code |
|
393 | (6) |
|
|
393 | (1) |
|
|
393 | (1) |
|
B.3 Matlab® R-Function Evaluation Program |
|
|
394 | (1) |
|
B.4 Matlab® Meta-Cosine Function |
|
|
395 | (1) |
|
B.5 Matlab® Cosine Evaluation Program |
|
|
395 | (1) |
|
B.6 Maple® 10 Program Calculates Phase Plane Plot for Fractional Sine versus Cosine |
|
|
396 | (3) |
C Tornado Simulation |
|
399 | (2) |
D Special Topics in Fractional Differintegration |
|
401 | (12) |
|
|
401 | (1) |
|
D.2 Fractional Integration of the Segmented tn-Function |
|
|
401 | (3) |
|
D.3 Fractional Differentiation of the Segmented tn-Function |
|
|
404 | (2) |
|
D.4 Fractional Integration of Segmented Fractional Trigonometric Functions |
|
|
406 | (2) |
|
D.5 Fractional Differentiation of Segmented Fractional Trigonometric Functions |
|
|
408 | (5) |
E Alternate Forms |
|
413 | (4) |
|
|
413 | (1) |
|
E.2 Reduced Variable Summation Forms |
|
|
414 | (1) |
|
E.3 Natural Quency Simplification |
|
|
415 | (2) |
References |
|
417 | (8) |
Index |
|
425 | |