Atjaunināt sīkdatņu piekrišanu

Fracture Mechanics: Fundamentals and Applications, Fourth Edition 4th edition [Hardback]

3.83/5 (23 ratings by Goodreads)
(Quest Integrity Group, Boulder USA)
  • Formāts: Hardback, 684 pages, height x width: 254x178 mm, weight: 1560 g, 40 Tables, black and white; 8 Line drawings, color; 495 Line drawings, black and white; 30 Halftones, black and white; 8 Illustrations, color; 525 Illustrations, black and white
  • Izdošanas datums: 23-Feb-2017
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1498728138
  • ISBN-13: 9781498728133
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 107,89 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 152,97 €
  • Ietaupiet 29%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 684 pages, height x width: 254x178 mm, weight: 1560 g, 40 Tables, black and white; 8 Line drawings, color; 495 Line drawings, black and white; 30 Halftones, black and white; 8 Illustrations, color; 525 Illustrations, black and white
  • Izdošanas datums: 23-Feb-2017
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1498728138
  • ISBN-13: 9781498728133
Citas grāmatas par šo tēmu:
With its combination of practicality, readability, and rigor that is characteristic of any truly authoritative reference and text, Fracture Mechanics: Fundamentals and Applications quickly established itself as the most comprehensive guide to fracture mechanics available. It has been adopted by more than 100 universities and embraced by thousands of professional engineers worldwide. Now in its third edition, the book continues to raise the bar in both scope and coverage. It encompasses theory and applications, linear and nonlinear fracture mechanics, solid mechanics, and materials science with a unified, balanced, and in-depth approach.

Reflecting the many advances made in the decade since the previous edition came about, this indispensable Third Edition now includes:

  • A new chapter on environmental cracking
  • Expanded coverage of weight functions
  • New material on toughness test methods
  • New problems at the end of the book
  • New material on the failure assessment diagram (FAD) method
  • Expanded and updated coverage of crack closure and variable-amplitude fatigue
  • Updated solutions manual

    In addition to these enhancements, Fracture Mechanics: Fundamentals and Applications, Third Edition also includes detailed mathematical derivations in appendices at the end of applicable chapters; recent developments in laboratory testing, application to structures, and computational methods; coverage of micromechanisms of fracture; and more than 400 illustrations. This reference continues to be a necessity on the desk of anyone involved with fracture mechanics.
  • Recenzijas

    "This book presents a good cross section of theoretical and practical material, providing the student with a good grounding in the fundamentals as well as examples and opportunities to practice solving engineering problems related to fracture. I especially like the historical approach taken in this book, which shows how the field has developed rapidly over the past 75 years. This gives the student an appreciation of how recently the field has emerged and how it is still evolving." Michael H. Santare, University of Delaware, USA

    Preface xv
    Section I Introduction
    1 History and Overview
    3(22)
    1.1 Why Structures Fail
    3(3)
    1.2 Historical Perspective
    6(6)
    1.2.1 Early Fracture Research
    8(1)
    1.2.2 The Liberty Ships
    8(1)
    1.2.3 Postwar Fracture Mechanics Research
    9(1)
    1.2.4 Fracture Mechanics from 1960 through 1980
    10(2)
    1.2.5 Fracture Mechanics from 1980 to the Present
    12(1)
    1.3 The Fracture Mechanics Approach to Design
    12(4)
    1.3.1 The Energy Criterion
    13(1)
    1.3.2 The Stress Intensity Approach
    14(1)
    1.3.3 Time-Dependent Crack Growth and Damage Tolerance
    15(1)
    1.4 Effect of Material Properties on Fracture
    16(1)
    1.5 A Brief Review of Dimensional Analysis
    17(4)
    1.5.1 The Buckingham II Theorem
    18(1)
    1.5.2 Dimensional Analysis in Fracture Mechanics
    19(2)
    References
    21(4)
    Section II Fundamental Concepts
    2 Linear Elastic Fracture Mechanics
    25(84)
    2.1 An Atomic View of Fracture
    25(2)
    2.2 Stress Concentration Effect of Flaws
    27(3)
    2.3 The Griffith Energy Balance
    30(5)
    2.3.1 Comparison with the Critical Stress Criterion
    32(1)
    2.3.2 Modified Griffith Equation
    33(2)
    2.4 Energy Release Rate
    35(4)
    2.5 Instability and the R Curve
    39(5)
    2.5.1 Reasons for the R Curve Shape
    40(1)
    2.5.2 Load Control versus Displacement Control
    41(1)
    2.5.3 Structures with Finite Compliance
    42(2)
    2.6 Stress Analysis of Cracks
    44(16)
    2.6.1 The Stress Intensity Factor
    44(3)
    2.6.2 Relationship between K and Global Behavior
    47(4)
    2.6.3 Effect of Finite Size
    51(4)
    2.6.4 Principle of Superposition
    55(2)
    2.6.5 Weight Functions
    57(3)
    2.7 Relationship between K and
    60(2)
    2.8 Crack Tip Plasticity
    62(9)
    2.8.1 The Irwin Approach
    63(3)
    2.8.2 The Strip Yield Model
    66(2)
    2.8.3 Comparison of Plastic Zone Corrections
    68(1)
    2.8.4 Plastic Zone Shape
    69(2)
    2.9 K-Controlled Fracture
    71(4)
    2.10 Plane Strain Fracture: Fact versus Fiction
    75(9)
    2.10.1 Crack Tip Triaxiality
    76(2)
    2.10.2 Effect of Thickness on Apparent Fracture Toughness
    78(3)
    2.10.3 Plastic Zone Effects
    81(2)
    2.10.4 Implications for Cracks in Structures
    83(1)
    2.11 Mixed-Mode Fracture
    84(6)
    2.11.1 Propagation of an Angled Crack
    85(2)
    2.11.2 Equivalent Mode I Crack
    87(1)
    2.11.3 Biaxial Loading
    88(2)
    2.12 Interaction of Multiple Cracks
    90(2)
    2.12.1 Coplanar Cracks
    90(1)
    2.12.2 Parallel Cracks
    90(2)
    Appendix 2A: Mathematical Foundations of Linear Elastic Fracture Mechanics: Selected Results
    92(15)
    References
    107(2)
    3 Elastic-Plastic Fracture Mechanics
    109(72)
    3.1 Crack Tip Opening Displacement
    109(5)
    3.2 The J Contour Integral
    114(13)
    3.2.1 Nonlinear Energy Release Rate
    115(2)
    3.2.2 J as a Path-Independent Line Integral
    117(1)
    3.2.3 J as a Stress Intensity Parameter
    118(1)
    3.2.4 The Large-Strain Zone
    119(2)
    3.2.5 Laboratory Measurement of J
    121(6)
    3.3 Relationships between J and CTOD
    127(2)
    3.4 Crack Growth Resistance Curves
    129(6)
    3.4.1 Stable and Unstable Crack Growth
    131(2)
    3.4.2 Computing J for a Growing Crack
    133(2)
    3.5 J-Controlled Fracture
    135(6)
    3.5.1 Stationary Cracks
    136(2)
    3.5.2 J-Controlled Crack Growth
    138(3)
    3.6 Crack Tip Constraint under Large-Scale Yielding
    141(19)
    3.6.1 The Elastic T Stress
    145(2)
    3.6.2 J-Q Theory
    147(5)
    3.6.2.1 The J-Q Toughness Locus
    149(1)
    3.6.2.2 Effect of Failure Mechanism on the J-Q Locus
    150(2)
    3.6.3 Scaling Model for Cleavage Fracture
    152(5)
    3.6.3.1 Failure Criterion
    152(1)
    3.6.3.2 The Jo Parameter
    153(1)
    3.6.3.3 Three-Dimensional Effects
    154(1)
    3.6.3.4 Application of the Model
    155(2)
    3.6.4 Limitations of Two-Parameter Fracture Mechanics
    157(3)
    Appendix 3A: Mathematical Foundations of Elastic-Plastic Fracture Mechanics: Selected Results
    160(18)
    References
    178(3)
    4 Dynamic and Time-Dependent Fracture
    181(48)
    4.1 Dynamic Fracture and Crack Arrest
    181(17)
    4.1.1 Rapid Loading of a Stationary Crack
    182(5)
    4.1.2 Rapid Crack Propagation and Arrest
    187(10)
    4.1.2.1 Crack Speed
    189(1)
    4.1.2.2 Elastodynamic Crack Tip Parameters
    190(3)
    4.1.2.3 Dynamic Toughness
    193(1)
    4.1.2.4 Crack Arrest
    194(3)
    4.1.3 Dynamic Contour Integrals
    197(1)
    4.2 Creep Crack Growth
    198(8)
    4.2.1 The C Integral
    199(3)
    4.2.2 Short-Time versus Long-Time Behavior
    202(4)
    4.2.2.1 The Ct Parameter
    203(2)
    4.2.2.2 Primary Creep
    205(1)
    4.3 Viscoelastic Fracture Mechanics
    206(10)
    4.3.1 Linear Viscoelasticity
    206(3)
    4.3.2 The Viscoelastic J Integral
    209(4)
    4.3.2.1 Constitutive Equations
    209(1)
    4.3.2.2 Correspondence Principle
    210(1)
    4.3.2.3 Generalized J Integral
    210(2)
    4.3.2.4 Crack Initiation and Growth
    212(1)
    4.3.3 Transition from Linear to Nonlinear Behavior
    213(3)
    Appendix 4A: Dynamic Fracture Analysis: Selected Results
    216(7)
    References
    223(6)
    Section III Material Behavior
    5 Fracture Mechanisms in Metals
    229(38)
    5.1 Ductile Fracture
    229(15)
    5.1.1 Void Nucleation
    231(1)
    5.1.2 Void Growth and Coalescence
    232(9)
    5.1.3 Ductile Crack Growth
    241(3)
    5.2 Cleavage
    244(12)
    5.2.1 Fractography
    244(1)
    5.2.2 Mechanisms of Cleavage Initiation
    244(5)
    5.2.3 Mathematical Models of Cleavage Fracture Toughness
    249(7)
    5.3 The Ductile-Brittle Transition
    256(2)
    5.4 Intergranular Fracture
    258(1)
    Appendix 5A: Statistical Modeling of Cleavage Fracture
    259(5)
    References
    264(3)
    6 Fracture Mechanisms in Nonmetals
    267(42)
    6.1 Engineering Plastics
    267(24)
    6.1.1 Structure and Properties of Polymers
    268(6)
    6.1.1.1 Molecular Weight
    268(1)
    6.1.1.2 Molecular Structure
    269(1)
    6.1.1.3 Crystalline and Amorphous Polymers
    269(2)
    6.1.1.4 Viscoelastic Behavior
    271(2)
    6.1.1.5 Mechanical Analogs
    273(1)
    6.1.2 Yielding and Fracture in Polymers
    274(6)
    6.1.2.1 Chain Scission and Disentanglement
    275(1)
    6.1.2.2 Shear Yielding and Crazing
    276(1)
    6.1.2.3 Crack Tip Behavior
    277(2)
    6.1.2.4 Rubber Toughening
    279(1)
    6.1.2.5 Fatigue
    279(1)
    6.1.3 Fiber-Reinforced Plastics
    280(11)
    6.1.3.1 An Overview of the Failure Mechanisms
    281(1)
    6.1.3.2 Delamination
    282(4)
    6.1.3.3 Compressive Failure
    286(2)
    6.1.3.4 Notch Strength
    288(3)
    6.1.3.5 Fatigue Damage
    291(1)
    6.2 Ceramics and Ceramic Composites
    291(10)
    6.2.1 Microcrack Toughening
    295(2)
    6.2.2 Transformation Toughening
    297(1)
    6.2.3 Ductile Phase Toughening
    298(1)
    6.2.4 Fiber and Whisker Toughening
    299(2)
    6.3 Concrete and Rock
    301(3)
    References
    304(5)
    Section IV Applications
    7 Fracture Toughness Testing of Metals
    309(60)
    7.1 General Considerations
    309(8)
    7.1.1 Specimen Configurations
    310(1)
    7.1.2 Specimen Orientation
    310(4)
    7.1.3 Fatigue Precracking
    314(1)
    7.1.4 Instrumentation
    315(1)
    7.1.5 Side Grooving
    316(1)
    7.2 KIc Testing
    317(9)
    7.2.1 ASTM E399
    318(4)
    7.2.2 Limitations of E399 and Similar Standards
    322(4)
    7.3 K-R Curve Testing
    326(4)
    7.3.1 Specimen Design
    327(1)
    7.3.2 Experimental Measurement of K-R Curves
    328(2)
    7.4 J Testing of Metals
    330(6)
    7.4.1 The Basic Test Procedure and JIc Measurements
    330(3)
    7.4.2 J-R Curve Testing
    333(2)
    7.4.3 Critical J Values for Unstable Fracture
    335(1)
    7.5 CTOD Testing
    336(2)
    7.6 Dynamic and Crack Arrest Toughness
    338(6)
    7.6.1 Rapid Loading in Fracture Testing
    339(1)
    7.6.2 KIa Measurements
    340(4)
    7.7 Fracture Testing of Weldments
    344(4)
    7.7.1 Specimen Design and Fabrication
    344(1)
    7.7.2 Notch Location and Orientation
    345(2)
    7.7.3 Fatigue Precracking
    347(1)
    7.7.4 Post-Test Analysis
    347(1)
    7.8 Testing and Analysis of Steels in the Ductile-Brittle Transition Region
    348(2)
    7.9 Component Fracture Tests
    350(3)
    7.9.1 Surface Crack Plate Specimens
    351(2)
    7.9.2 SENT Specimens
    353(1)
    7.10 Qualitative Toughness Tests
    353(5)
    7.10.1 Charpy and Izod Impact Test
    355(1)
    7.10.2 Drop Weight Test
    356(2)
    7.10.3 Drop Weight Tear and Dynamic Tear Tests
    358(1)
    Appendix 7: Stress Intensity, Compliance, and Limit Load Solutions for Laboratory Specimens
    358(6)
    References
    364(5)
    8 Fracture Testing of Nonmetals
    369(32)
    8.1 Fracture Toughness Measurements in Engineering Plastics
    369(20)
    8.1.1 The Suitability of K and J for Polymers
    369(7)
    8.1.1.1 K-Controlled Fracture
    370(3)
    8.1.1.2 ]-Controlled Fracture
    373(3)
    8.1.2 Precracking and Other Practical Matters
    376(2)
    8.1.3 KIc Testing
    378(4)
    8.1.4 J Testing
    382(2)
    8.1.5 Experimental Estimates of Time-Dependent Fracture Parameters
    384(3)
    8.1.6 Qualitative Fracture Tests on Plastics
    387(2)
    8.2 Interlaminar Toughness of Composites
    389(4)
    8.3 Ceramics
    393(5)
    8.3.1 Chevron-Notched Specimens
    394(2)
    8.3.2 Bend Specimens Precracked by Bridge Indentation
    396(2)
    References
    398(3)
    9 Application to Structures
    401(70)
    9.1 Linear Elastic Fracture Mechanics
    401(11)
    9.1.1 KI for Part-Through Cracks
    403(1)
    9.1.2 Influence Coefficients for Polynomial Stress Distributions
    404(4)
    9.1.3 Weight Functions for Arbitrary Loading
    408(2)
    9.1.4 Primary, Secondary, and Residual Stresses
    410(1)
    9.1.5 A Warning about LEFM
    411(1)
    9.2 The CTOD Design Curve
    412(2)
    9.3 Elastic-Plastic J-Integral Analysis
    414(13)
    9.3.1 The EPRI J-Estimation Procedure
    414(6)
    9.3.1.1 Theoretical Background
    415(1)
    9.3.1.2 Estimation Equations
    416(2)
    9.3.1.3 Comparison with Experimental J Estimates
    418(2)
    9.3.2 The Reference Stress Approach
    420(2)
    9.3.3 Ductile Instability Analysis
    422(3)
    9.3.4 Some Practical Considerations
    425(2)
    9.4 Failure Assessment Diagrams
    427(24)
    9.4.1 Original Concept
    427(3)
    9.4.2 J-Based FAD
    430(3)
    9.4.3 Approximations of the FAD Curve
    433(1)
    9.4.4 Fitting Elastic-Plastic Finite Element Results to a FAD Equation
    434(7)
    9.4.5 Application to Welded Structures
    441(6)
    9.4.5.1 Incorporating Weld Residual Stresses
    442(3)
    9.4.5.2 Weld Misalignment and Other Secondary Stresses
    445(1)
    9.4.5.3 Weld Strength Mismatch
    446(1)
    9.4.6 Primary versus Secondary Stresses in the FAD Method
    447(2)
    9.4.7 Ductile Tearing Analysis with the FAD
    449(1)
    9.4.8 Standardized FAD-Based Procedures
    450(1)
    9.5 Probabilistic Fracture Mechanics
    451(2)
    Appendix 9: Stress Intensity and Fully Plastic J Solutions for Selected Configurations
    453(16)
    References
    469(2)
    10 Fatigue Crack Propagation
    471(66)
    10.1 Similitude in Fatigue
    471(2)
    10.2 Empirical Fatigue Crack Growth Equations
    473(3)
    10.3 Life Prediction
    476(2)
    10.4 Crack Closure
    478(9)
    10.4.1 A Closer Look at Crack Wedging Mechanisms
    483(1)
    10.4.2 Effects of Loading Variables on Closure
    484(3)
    10.5 The Fatigue Threshold
    487(6)
    10.5.1 The Closure Model for the Threshold
    488(2)
    10.5.2 A Two-Criterion Model
    490(3)
    10.6 Variable-Amplitude Loading and Retardation
    493(19)
    10.6.1 Linear Damage Model for Variable-Amplitude Fatigue
    493(4)
    10.6.2 Cycle Counting and Histogram Construction
    497(4)
    10.6.3 Reverse Plasticity at the Crack Tip
    501(4)
    10.6.4 The Effect of Overloads and Underloads
    505(5)
    10.6.5 Modeling Retardation and Variable-Amplitude Fatigue
    510(2)
    10.7 Growth of Short Cracks
    512(4)
    10.7.1 Microstructurally Short Cracks
    514(1)
    10.7.2 Mechanically Short Cracks
    515(1)
    10.8 Micromechanisms of Fatigue
    516(5)
    10.8.1 Fatigue in Region II
    517(1)
    10.8.2 Micromechanisms near the Threshold
    518(2)
    10.8.3 Fatigue at High DeltaK Values
    520(1)
    10.9 Fatigue Crack Growth Experiments
    521(6)
    10.9.1 Crack Growth Rate and Threshold Measurement
    521(2)
    10.9.2 Closure Measurements
    523(2)
    10.9.3 A Proposed Experimental Definition of DeltaKeff
    525(2)
    10.10 Damage Tolerance Methodology
    527(2)
    Appendix 10A: Application of the J Contour Integral to Cyclic Loading
    529(5)
    References
    534(3)
    11 Environmentally Assisted Cracking in Metals
    537(44)
    11.1 Corrosion Principles
    537(5)
    11.1.1 Electrochemical Reactions
    537(3)
    11.1.2 Corrosion Current and Polarization
    540(1)
    11.1.3 Electrode Potential and Passivity
    541(1)
    11.1.4 Cathodic Protection
    541(1)
    11.1.5 Types of Corrosion
    542(1)
    11.2 Environmental Cracking Overview
    542(9)
    11.2.1 Terminology and Classification of Cracking Mechanisms
    543(1)
    11.2.2 Occluded Chemistry of Cracks, Pits, and Crevices
    544(1)
    11.2.3 Crack Growth Rate versus Applied Stress Intensity
    544(2)
    11.2.4 The Threshold for EAC
    546(1)
    11.2.5 Small Crack Effects
    547(2)
    11.2.6 Static, Cyclic, and Fluctuating Loads
    549(1)
    11.2.7 Cracking Morphology
    549(1)
    11.2.8 Life Prediction
    550(1)
    11.3 Stress Corrosion Cracking
    551(5)
    11.3.1 The Film Rupture Model
    553(1)
    11.3.2 Crack Growth Rate in Stage II
    554(1)
    11.3.3 Metallurgical Variables That Influence SCC
    554(1)
    11.3.4 Corrosion Product Wedging
    555(1)
    11.4 Hydrogen Embrittlement
    556(8)
    11.4.1 Cracking Mechanisms
    556(1)
    11.4.2 Variables That Affect Cracking Behavior
    557(7)
    11.4.2.1 Loading Rate and Load History
    557(3)
    11.4.2.2 Strength
    560(1)
    11.4.2.3 Amount of Available Hydrogen
    561(1)
    11.4.2.4 Temperature
    561(3)
    11.5 Corrosion Fatigue
    564(7)
    11.5.1 Time-Dependent and Cycle-Dependent Behavior
    564(2)
    11.5.2 Typical Data
    566(3)
    11.5.3 Mechanisms
    569(1)
    11.5.3.1 Film Rupture Models
    569(1)
    11.5.3.2 Hydrogen Environment Embrittlement
    569(1)
    11.5.3.3 Surface Films
    570(1)
    11.5.4 The Effect of Corrosion Product Wedging on Fatigue
    570(1)
    11.6 Experimental Methods
    571(7)
    11.6.1 Tests on Smooth Specimens
    571(2)
    11.6.2 Fracture Mechanics Test Methods
    573(5)
    References
    578(3)
    12 Computational Fracture Mechanics
    581(44)
    12.1 An Overview of Numerical Methods
    581(5)
    12.1.1 The Finite Element Method
    582(2)
    12.1.2 The Boundary Integral Equation Method
    584(2)
    12.2 Traditional Methods in Computational Fracture Mechanics
    586(6)
    12.2.1 Stress and Displacement Matching
    587(1)
    12.2.2 Elemental Crack Advance
    588(1)
    12.2.3 Contour Integration
    588(1)
    12.2.4 Virtual Crack Extension: Stiffness Derivative Formulation
    589(1)
    12.2.5 Virtual Crack Extension: Continuum Approach
    590(2)
    12.3 The Energy Domain Integral
    592(7)
    12.3.1 Theoretical Background
    592(3)
    12.3.2 Generalization to Three Dimensions
    595(2)
    12.3.3 Finite Element Implementation
    597(2)
    12.4 Mesh Design
    599(7)
    12.5 Linear Elastic Convergence Study
    606(8)
    12.6 Analysis of Growing Cracks
    614(4)
    Appendix 12: Properties of Singularity Elements
    618(4)
    References
    622(3)
    13 Practice Problems
    625(22)
    13.1
    Chapter 1
    625(1)
    13.2
    Chapter 2
    626(3)
    13.3
    Chapter 3
    629(2)
    13.4
    Chapter 4
    631(1)
    13.5
    Chapter 5
    632(1)
    13.6
    Chapter 6
    633(1)
    13.7
    Chapter 7
    634(3)
    13.8
    Chapter 8
    637(2)
    13.9
    Chapter 9
    639(1)
    13.10
    Chapter 10
    640(2)
    13.11
    Chapter 11
    642(1)
    13.12
    Chapter 12
    643(4)
    Index 647
    Dr. Anderson is an internationally recognized expert in fracture mechanics and fitness-for-service methods. In addition to his best-selling book on fracture mechanics, Dr. Anderson has authored over 100 papers and 3 book chapters. During his career, he has held positions at a number of organizations, including TWI, Texas A&M University, Quest Integrity and Team Industrial Services. He founded a consulting and software company in 1995, which was acquired by Quest Integrity in 2007. Recently, Dr. Anderson returned to independent consulting. For more information about Dr. Anderson, visit his website at www.FractureMechanics.com.