Preface |
|
xv | |
Section I Introduction |
|
|
|
3 | (22) |
|
|
3 | (3) |
|
1.2 Historical Perspective |
|
|
6 | (6) |
|
1.2.1 Early Fracture Research |
|
|
8 | (1) |
|
|
8 | (1) |
|
1.2.3 Postwar Fracture Mechanics Research |
|
|
9 | (1) |
|
1.2.4 Fracture Mechanics from 1960 through 1980 |
|
|
10 | (2) |
|
1.2.5 Fracture Mechanics from 1980 to the Present |
|
|
12 | (1) |
|
1.3 The Fracture Mechanics Approach to Design |
|
|
12 | (4) |
|
1.3.1 The Energy Criterion |
|
|
13 | (1) |
|
1.3.2 The Stress Intensity Approach |
|
|
14 | (1) |
|
1.3.3 Time-Dependent Crack Growth and Damage Tolerance |
|
|
15 | (1) |
|
1.4 Effect of Material Properties on Fracture |
|
|
16 | (1) |
|
1.5 A Brief Review of Dimensional Analysis |
|
|
17 | (4) |
|
1.5.1 The Buckingham II Theorem |
|
|
18 | (1) |
|
1.5.2 Dimensional Analysis in Fracture Mechanics |
|
|
19 | (2) |
|
|
21 | (4) |
Section II Fundamental Concepts |
|
|
2 Linear Elastic Fracture Mechanics |
|
|
25 | (84) |
|
2.1 An Atomic View of Fracture |
|
|
25 | (2) |
|
2.2 Stress Concentration Effect of Flaws |
|
|
27 | (3) |
|
2.3 The Griffith Energy Balance |
|
|
30 | (5) |
|
2.3.1 Comparison with the Critical Stress Criterion |
|
|
32 | (1) |
|
2.3.2 Modified Griffith Equation |
|
|
33 | (2) |
|
|
35 | (4) |
|
2.5 Instability and the R Curve |
|
|
39 | (5) |
|
2.5.1 Reasons for the R Curve Shape |
|
|
40 | (1) |
|
2.5.2 Load Control versus Displacement Control |
|
|
41 | (1) |
|
2.5.3 Structures with Finite Compliance |
|
|
42 | (2) |
|
2.6 Stress Analysis of Cracks |
|
|
44 | (16) |
|
2.6.1 The Stress Intensity Factor |
|
|
44 | (3) |
|
2.6.2 Relationship between K and Global Behavior |
|
|
47 | (4) |
|
2.6.3 Effect of Finite Size |
|
|
51 | (4) |
|
2.6.4 Principle of Superposition |
|
|
55 | (2) |
|
|
57 | (3) |
|
2.7 Relationship between K and |
|
|
60 | (2) |
|
|
62 | (9) |
|
|
63 | (3) |
|
2.8.2 The Strip Yield Model |
|
|
66 | (2) |
|
2.8.3 Comparison of Plastic Zone Corrections |
|
|
68 | (1) |
|
|
69 | (2) |
|
2.9 K-Controlled Fracture |
|
|
71 | (4) |
|
2.10 Plane Strain Fracture: Fact versus Fiction |
|
|
75 | (9) |
|
2.10.1 Crack Tip Triaxiality |
|
|
76 | (2) |
|
2.10.2 Effect of Thickness on Apparent Fracture Toughness |
|
|
78 | (3) |
|
2.10.3 Plastic Zone Effects |
|
|
81 | (2) |
|
2.10.4 Implications for Cracks in Structures |
|
|
83 | (1) |
|
|
84 | (6) |
|
2.11.1 Propagation of an Angled Crack |
|
|
85 | (2) |
|
2.11.2 Equivalent Mode I Crack |
|
|
87 | (1) |
|
|
88 | (2) |
|
2.12 Interaction of Multiple Cracks |
|
|
90 | (2) |
|
|
90 | (1) |
|
|
90 | (2) |
|
Appendix 2A: Mathematical Foundations of Linear Elastic Fracture Mechanics: Selected Results |
|
|
92 | (15) |
|
|
107 | (2) |
|
3 Elastic-Plastic Fracture Mechanics |
|
|
109 | (72) |
|
3.1 Crack Tip Opening Displacement |
|
|
109 | (5) |
|
3.2 The J Contour Integral |
|
|
114 | (13) |
|
3.2.1 Nonlinear Energy Release Rate |
|
|
115 | (2) |
|
3.2.2 J as a Path-Independent Line Integral |
|
|
117 | (1) |
|
3.2.3 J as a Stress Intensity Parameter |
|
|
118 | (1) |
|
3.2.4 The Large-Strain Zone |
|
|
119 | (2) |
|
3.2.5 Laboratory Measurement of J |
|
|
121 | (6) |
|
3.3 Relationships between J and CTOD |
|
|
127 | (2) |
|
3.4 Crack Growth Resistance Curves |
|
|
129 | (6) |
|
3.4.1 Stable and Unstable Crack Growth |
|
|
131 | (2) |
|
3.4.2 Computing J for a Growing Crack |
|
|
133 | (2) |
|
3.5 J-Controlled Fracture |
|
|
135 | (6) |
|
|
136 | (2) |
|
3.5.2 J-Controlled Crack Growth |
|
|
138 | (3) |
|
3.6 Crack Tip Constraint under Large-Scale Yielding |
|
|
141 | (19) |
|
3.6.1 The Elastic T Stress |
|
|
145 | (2) |
|
|
147 | (5) |
|
3.6.2.1 The J-Q Toughness Locus |
|
|
149 | (1) |
|
3.6.2.2 Effect of Failure Mechanism on the J-Q Locus |
|
|
150 | (2) |
|
3.6.3 Scaling Model for Cleavage Fracture |
|
|
152 | (5) |
|
3.6.3.1 Failure Criterion |
|
|
152 | (1) |
|
|
153 | (1) |
|
3.6.3.3 Three-Dimensional Effects |
|
|
154 | (1) |
|
3.6.3.4 Application of the Model |
|
|
155 | (2) |
|
3.6.4 Limitations of Two-Parameter Fracture Mechanics |
|
|
157 | (3) |
|
Appendix 3A: Mathematical Foundations of Elastic-Plastic Fracture Mechanics: Selected Results |
|
|
160 | (18) |
|
|
178 | (3) |
|
4 Dynamic and Time-Dependent Fracture |
|
|
181 | (48) |
|
4.1 Dynamic Fracture and Crack Arrest |
|
|
181 | (17) |
|
4.1.1 Rapid Loading of a Stationary Crack |
|
|
182 | (5) |
|
4.1.2 Rapid Crack Propagation and Arrest |
|
|
187 | (10) |
|
|
189 | (1) |
|
4.1.2.2 Elastodynamic Crack Tip Parameters |
|
|
190 | (3) |
|
4.1.2.3 Dynamic Toughness |
|
|
193 | (1) |
|
|
194 | (3) |
|
4.1.3 Dynamic Contour Integrals |
|
|
197 | (1) |
|
|
198 | (8) |
|
|
199 | (3) |
|
4.2.2 Short-Time versus Long-Time Behavior |
|
|
202 | (4) |
|
|
203 | (2) |
|
|
205 | (1) |
|
4.3 Viscoelastic Fracture Mechanics |
|
|
206 | (10) |
|
4.3.1 Linear Viscoelasticity |
|
|
206 | (3) |
|
4.3.2 The Viscoelastic J Integral |
|
|
209 | (4) |
|
4.3.2.1 Constitutive Equations |
|
|
209 | (1) |
|
4.3.2.2 Correspondence Principle |
|
|
210 | (1) |
|
4.3.2.3 Generalized J Integral |
|
|
210 | (2) |
|
4.3.2.4 Crack Initiation and Growth |
|
|
212 | (1) |
|
4.3.3 Transition from Linear to Nonlinear Behavior |
|
|
213 | (3) |
|
Appendix 4A: Dynamic Fracture Analysis: Selected Results |
|
|
216 | (7) |
|
|
223 | (6) |
Section III Material Behavior |
|
|
5 Fracture Mechanisms in Metals |
|
|
229 | (38) |
|
|
229 | (15) |
|
|
231 | (1) |
|
5.1.2 Void Growth and Coalescence |
|
|
232 | (9) |
|
5.1.3 Ductile Crack Growth |
|
|
241 | (3) |
|
|
244 | (12) |
|
|
244 | (1) |
|
5.2.2 Mechanisms of Cleavage Initiation |
|
|
244 | (5) |
|
5.2.3 Mathematical Models of Cleavage Fracture Toughness |
|
|
249 | (7) |
|
5.3 The Ductile-Brittle Transition |
|
|
256 | (2) |
|
5.4 Intergranular Fracture |
|
|
258 | (1) |
|
Appendix 5A: Statistical Modeling of Cleavage Fracture |
|
|
259 | (5) |
|
|
264 | (3) |
|
6 Fracture Mechanisms in Nonmetals |
|
|
267 | (42) |
|
|
267 | (24) |
|
6.1.1 Structure and Properties of Polymers |
|
|
268 | (6) |
|
|
268 | (1) |
|
6.1.1.2 Molecular Structure |
|
|
269 | (1) |
|
6.1.1.3 Crystalline and Amorphous Polymers |
|
|
269 | (2) |
|
6.1.1.4 Viscoelastic Behavior |
|
|
271 | (2) |
|
6.1.1.5 Mechanical Analogs |
|
|
273 | (1) |
|
6.1.2 Yielding and Fracture in Polymers |
|
|
274 | (6) |
|
6.1.2.1 Chain Scission and Disentanglement |
|
|
275 | (1) |
|
6.1.2.2 Shear Yielding and Crazing |
|
|
276 | (1) |
|
6.1.2.3 Crack Tip Behavior |
|
|
277 | (2) |
|
6.1.2.4 Rubber Toughening |
|
|
279 | (1) |
|
|
279 | (1) |
|
6.1.3 Fiber-Reinforced Plastics |
|
|
280 | (11) |
|
6.1.3.1 An Overview of the Failure Mechanisms |
|
|
281 | (1) |
|
|
282 | (4) |
|
6.1.3.3 Compressive Failure |
|
|
286 | (2) |
|
|
288 | (3) |
|
|
291 | (1) |
|
6.2 Ceramics and Ceramic Composites |
|
|
291 | (10) |
|
6.2.1 Microcrack Toughening |
|
|
295 | (2) |
|
6.2.2 Transformation Toughening |
|
|
297 | (1) |
|
6.2.3 Ductile Phase Toughening |
|
|
298 | (1) |
|
6.2.4 Fiber and Whisker Toughening |
|
|
299 | (2) |
|
|
301 | (3) |
|
|
304 | (5) |
Section IV Applications |
|
|
7 Fracture Toughness Testing of Metals |
|
|
309 | (60) |
|
7.1 General Considerations |
|
|
309 | (8) |
|
7.1.1 Specimen Configurations |
|
|
310 | (1) |
|
7.1.2 Specimen Orientation |
|
|
310 | (4) |
|
7.1.3 Fatigue Precracking |
|
|
314 | (1) |
|
|
315 | (1) |
|
|
316 | (1) |
|
|
317 | (9) |
|
|
318 | (4) |
|
7.2.2 Limitations of E399 and Similar Standards |
|
|
322 | (4) |
|
|
326 | (4) |
|
|
327 | (1) |
|
7.3.2 Experimental Measurement of K-R Curves |
|
|
328 | (2) |
|
|
330 | (6) |
|
7.4.1 The Basic Test Procedure and JIc Measurements |
|
|
330 | (3) |
|
|
333 | (2) |
|
7.4.3 Critical J Values for Unstable Fracture |
|
|
335 | (1) |
|
|
336 | (2) |
|
7.6 Dynamic and Crack Arrest Toughness |
|
|
338 | (6) |
|
7.6.1 Rapid Loading in Fracture Testing |
|
|
339 | (1) |
|
|
340 | (4) |
|
7.7 Fracture Testing of Weldments |
|
|
344 | (4) |
|
7.7.1 Specimen Design and Fabrication |
|
|
344 | (1) |
|
7.7.2 Notch Location and Orientation |
|
|
345 | (2) |
|
7.7.3 Fatigue Precracking |
|
|
347 | (1) |
|
|
347 | (1) |
|
7.8 Testing and Analysis of Steels in the Ductile-Brittle Transition Region |
|
|
348 | (2) |
|
7.9 Component Fracture Tests |
|
|
350 | (3) |
|
7.9.1 Surface Crack Plate Specimens |
|
|
351 | (2) |
|
|
353 | (1) |
|
7.10 Qualitative Toughness Tests |
|
|
353 | (5) |
|
7.10.1 Charpy and Izod Impact Test |
|
|
355 | (1) |
|
|
356 | (2) |
|
7.10.3 Drop Weight Tear and Dynamic Tear Tests |
|
|
358 | (1) |
|
Appendix 7: Stress Intensity, Compliance, and Limit Load Solutions for Laboratory Specimens |
|
|
358 | (6) |
|
|
364 | (5) |
|
8 Fracture Testing of Nonmetals |
|
|
369 | (32) |
|
8.1 Fracture Toughness Measurements in Engineering Plastics |
|
|
369 | (20) |
|
8.1.1 The Suitability of K and J for Polymers |
|
|
369 | (7) |
|
8.1.1.1 K-Controlled Fracture |
|
|
370 | (3) |
|
8.1.1.2 ]-Controlled Fracture |
|
|
373 | (3) |
|
8.1.2 Precracking and Other Practical Matters |
|
|
376 | (2) |
|
|
378 | (4) |
|
|
382 | (2) |
|
8.1.5 Experimental Estimates of Time-Dependent Fracture Parameters |
|
|
384 | (3) |
|
8.1.6 Qualitative Fracture Tests on Plastics |
|
|
387 | (2) |
|
8.2 Interlaminar Toughness of Composites |
|
|
389 | (4) |
|
|
393 | (5) |
|
8.3.1 Chevron-Notched Specimens |
|
|
394 | (2) |
|
8.3.2 Bend Specimens Precracked by Bridge Indentation |
|
|
396 | (2) |
|
|
398 | (3) |
|
9 Application to Structures |
|
|
401 | (70) |
|
9.1 Linear Elastic Fracture Mechanics |
|
|
401 | (11) |
|
9.1.1 KI for Part-Through Cracks |
|
|
403 | (1) |
|
9.1.2 Influence Coefficients for Polynomial Stress Distributions |
|
|
404 | (4) |
|
9.1.3 Weight Functions for Arbitrary Loading |
|
|
408 | (2) |
|
9.1.4 Primary, Secondary, and Residual Stresses |
|
|
410 | (1) |
|
9.1.5 A Warning about LEFM |
|
|
411 | (1) |
|
9.2 The CTOD Design Curve |
|
|
412 | (2) |
|
9.3 Elastic-Plastic J-Integral Analysis |
|
|
414 | (13) |
|
9.3.1 The EPRI J-Estimation Procedure |
|
|
414 | (6) |
|
9.3.1.1 Theoretical Background |
|
|
415 | (1) |
|
9.3.1.2 Estimation Equations |
|
|
416 | (2) |
|
9.3.1.3 Comparison with Experimental J Estimates |
|
|
418 | (2) |
|
9.3.2 The Reference Stress Approach |
|
|
420 | (2) |
|
9.3.3 Ductile Instability Analysis |
|
|
422 | (3) |
|
9.3.4 Some Practical Considerations |
|
|
425 | (2) |
|
9.4 Failure Assessment Diagrams |
|
|
427 | (24) |
|
|
427 | (3) |
|
|
430 | (3) |
|
9.4.3 Approximations of the FAD Curve |
|
|
433 | (1) |
|
9.4.4 Fitting Elastic-Plastic Finite Element Results to a FAD Equation |
|
|
434 | (7) |
|
9.4.5 Application to Welded Structures |
|
|
441 | (6) |
|
9.4.5.1 Incorporating Weld Residual Stresses |
|
|
442 | (3) |
|
9.4.5.2 Weld Misalignment and Other Secondary Stresses |
|
|
445 | (1) |
|
9.4.5.3 Weld Strength Mismatch |
|
|
446 | (1) |
|
9.4.6 Primary versus Secondary Stresses in the FAD Method |
|
|
447 | (2) |
|
9.4.7 Ductile Tearing Analysis with the FAD |
|
|
449 | (1) |
|
9.4.8 Standardized FAD-Based Procedures |
|
|
450 | (1) |
|
9.5 Probabilistic Fracture Mechanics |
|
|
451 | (2) |
|
Appendix 9: Stress Intensity and Fully Plastic J Solutions for Selected Configurations |
|
|
453 | (16) |
|
|
469 | (2) |
|
10 Fatigue Crack Propagation |
|
|
471 | (66) |
|
10.1 Similitude in Fatigue |
|
|
471 | (2) |
|
10.2 Empirical Fatigue Crack Growth Equations |
|
|
473 | (3) |
|
|
476 | (2) |
|
|
478 | (9) |
|
10.4.1 A Closer Look at Crack Wedging Mechanisms |
|
|
483 | (1) |
|
10.4.2 Effects of Loading Variables on Closure |
|
|
484 | (3) |
|
10.5 The Fatigue Threshold |
|
|
487 | (6) |
|
10.5.1 The Closure Model for the Threshold |
|
|
488 | (2) |
|
10.5.2 A Two-Criterion Model |
|
|
490 | (3) |
|
10.6 Variable-Amplitude Loading and Retardation |
|
|
493 | (19) |
|
10.6.1 Linear Damage Model for Variable-Amplitude Fatigue |
|
|
493 | (4) |
|
10.6.2 Cycle Counting and Histogram Construction |
|
|
497 | (4) |
|
10.6.3 Reverse Plasticity at the Crack Tip |
|
|
501 | (4) |
|
10.6.4 The Effect of Overloads and Underloads |
|
|
505 | (5) |
|
10.6.5 Modeling Retardation and Variable-Amplitude Fatigue |
|
|
510 | (2) |
|
10.7 Growth of Short Cracks |
|
|
512 | (4) |
|
10.7.1 Microstructurally Short Cracks |
|
|
514 | (1) |
|
10.7.2 Mechanically Short Cracks |
|
|
515 | (1) |
|
10.8 Micromechanisms of Fatigue |
|
|
516 | (5) |
|
10.8.1 Fatigue in Region II |
|
|
517 | (1) |
|
10.8.2 Micromechanisms near the Threshold |
|
|
518 | (2) |
|
10.8.3 Fatigue at High DeltaK Values |
|
|
520 | (1) |
|
10.9 Fatigue Crack Growth Experiments |
|
|
521 | (6) |
|
10.9.1 Crack Growth Rate and Threshold Measurement |
|
|
521 | (2) |
|
10.9.2 Closure Measurements |
|
|
523 | (2) |
|
10.9.3 A Proposed Experimental Definition of DeltaKeff |
|
|
525 | (2) |
|
10.10 Damage Tolerance Methodology |
|
|
527 | (2) |
|
Appendix 10A: Application of the J Contour Integral to Cyclic Loading |
|
|
529 | (5) |
|
|
534 | (3) |
|
11 Environmentally Assisted Cracking in Metals |
|
|
537 | (44) |
|
11.1 Corrosion Principles |
|
|
537 | (5) |
|
11.1.1 Electrochemical Reactions |
|
|
537 | (3) |
|
11.1.2 Corrosion Current and Polarization |
|
|
540 | (1) |
|
11.1.3 Electrode Potential and Passivity |
|
|
541 | (1) |
|
11.1.4 Cathodic Protection |
|
|
541 | (1) |
|
11.1.5 Types of Corrosion |
|
|
542 | (1) |
|
11.2 Environmental Cracking Overview |
|
|
542 | (9) |
|
11.2.1 Terminology and Classification of Cracking Mechanisms |
|
|
543 | (1) |
|
11.2.2 Occluded Chemistry of Cracks, Pits, and Crevices |
|
|
544 | (1) |
|
11.2.3 Crack Growth Rate versus Applied Stress Intensity |
|
|
544 | (2) |
|
11.2.4 The Threshold for EAC |
|
|
546 | (1) |
|
11.2.5 Small Crack Effects |
|
|
547 | (2) |
|
11.2.6 Static, Cyclic, and Fluctuating Loads |
|
|
549 | (1) |
|
11.2.7 Cracking Morphology |
|
|
549 | (1) |
|
|
550 | (1) |
|
11.3 Stress Corrosion Cracking |
|
|
551 | (5) |
|
11.3.1 The Film Rupture Model |
|
|
553 | (1) |
|
11.3.2 Crack Growth Rate in Stage II |
|
|
554 | (1) |
|
11.3.3 Metallurgical Variables That Influence SCC |
|
|
554 | (1) |
|
11.3.4 Corrosion Product Wedging |
|
|
555 | (1) |
|
11.4 Hydrogen Embrittlement |
|
|
556 | (8) |
|
11.4.1 Cracking Mechanisms |
|
|
556 | (1) |
|
11.4.2 Variables That Affect Cracking Behavior |
|
|
557 | (7) |
|
11.4.2.1 Loading Rate and Load History |
|
|
557 | (3) |
|
|
560 | (1) |
|
11.4.2.3 Amount of Available Hydrogen |
|
|
561 | (1) |
|
|
561 | (3) |
|
|
564 | (7) |
|
11.5.1 Time-Dependent and Cycle-Dependent Behavior |
|
|
564 | (2) |
|
|
566 | (3) |
|
|
569 | (1) |
|
11.5.3.1 Film Rupture Models |
|
|
569 | (1) |
|
11.5.3.2 Hydrogen Environment Embrittlement |
|
|
569 | (1) |
|
|
570 | (1) |
|
11.5.4 The Effect of Corrosion Product Wedging on Fatigue |
|
|
570 | (1) |
|
11.6 Experimental Methods |
|
|
571 | (7) |
|
11.6.1 Tests on Smooth Specimens |
|
|
571 | (2) |
|
11.6.2 Fracture Mechanics Test Methods |
|
|
573 | (5) |
|
|
578 | (3) |
|
12 Computational Fracture Mechanics |
|
|
581 | (44) |
|
12.1 An Overview of Numerical Methods |
|
|
581 | (5) |
|
12.1.1 The Finite Element Method |
|
|
582 | (2) |
|
12.1.2 The Boundary Integral Equation Method |
|
|
584 | (2) |
|
12.2 Traditional Methods in Computational Fracture Mechanics |
|
|
586 | (6) |
|
12.2.1 Stress and Displacement Matching |
|
|
587 | (1) |
|
12.2.2 Elemental Crack Advance |
|
|
588 | (1) |
|
12.2.3 Contour Integration |
|
|
588 | (1) |
|
12.2.4 Virtual Crack Extension: Stiffness Derivative Formulation |
|
|
589 | (1) |
|
12.2.5 Virtual Crack Extension: Continuum Approach |
|
|
590 | (2) |
|
12.3 The Energy Domain Integral |
|
|
592 | (7) |
|
12.3.1 Theoretical Background |
|
|
592 | (3) |
|
12.3.2 Generalization to Three Dimensions |
|
|
595 | (2) |
|
12.3.3 Finite Element Implementation |
|
|
597 | (2) |
|
|
599 | (7) |
|
12.5 Linear Elastic Convergence Study |
|
|
606 | (8) |
|
12.6 Analysis of Growing Cracks |
|
|
614 | (4) |
|
Appendix 12: Properties of Singularity Elements |
|
|
618 | (4) |
|
|
622 | (3) |
|
|
625 | (22) |
|
|
625 | (1) |
|
|
626 | (3) |
|
|
629 | (2) |
|
|
631 | (1) |
|
|
632 | (1) |
|
|
633 | (1) |
|
|
634 | (3) |
|
|
637 | (2) |
|
|
639 | (1) |
|
|
640 | (2) |
|
|
642 | (1) |
|
|
643 | (4) |
Index |
|
647 | |