Atjaunināt sīkdatņu piekrišanu

E-grāmata: Free-Radical Retrograde-Precipitation Polymerization (FRRPP): Novel Concept, Processes, Materials, and Energy Aspects

  • Formāts: PDF+DRM
  • Izdošanas datums: 08-Jan-2010
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642030253
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 08-Jan-2010
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642030253
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The free-radical retrograde-precipitation polymerization (FRRPP) process was introduced by the author in the early 1990s as a chain polymerization method, whereby phase separation is occurring while reactive sites are above the lower cr- ical solution temperature (LCST). It was evident that certain regions of the product polymer attain temperatures above the average ?uid temperature, sometimes rea- ing carbonization temperatures. During the early stages of polymerization-induced phase separation, nanoscale polymer domains were also found to be persistent in the reacting system, in apparent contradiction with results of microstructural coarsening from constant-temperature modeling and experimental studies. This mass con - ment behavior was used for micropatterning, for entrapment of reactive radical sites, and for the formation of block copolymers that can be used as intermediates, surf- tants, coatings, coupling agents, foams, and hydrogels. FRRPP-based materials and its mechanism have also been proposed to be relevant in energy and environmentally responsible applications. This technology lacks intellectual appeal compared to others that have been p- posed to produce polymers of exotic architectures. There are no special chemical mediators needed. Control of conditions and product distribution is done by p- cess means, based on a robust and ?exible free-radical-based chemistry. Thus, it can readily be implemented in the laboratory and in production scale.
1 Background 1
1.1 Phase Separation Thermodynamics
4
1.1.1 Thermodynamics of Polymer Solutions
4
1.1.2 Liquid–Liquid Phase Equilibria of Polymer Solutions
7
1.1.3 The LCST Phenomenon in Experimental Polymer/Small-Molecule Systems
12
1.1.4 Nomenclature
22
1.2 Polymer Transport Processes
24
1.2.1 Fluid Flow
24
1.2.2 Heat Transfer
26
1.2.3 Diffusional Mass Transfer
28
1.2.4 Nomenclature
35
1.3 Conventional Polymerization Kinetics and Processes
37
1.3.1 Free-Radical Kinetics
38
1.3.2 Polymerization Processes
44
1.3.3 Copolymerization Kinetics
46
1.3.4 Nomenclature
47
1.4 Phase Separation Kinetics in Nonreactive Polymer Systems
48
1.4.1 Phase Separation Mechanisms
48
1.4.2 Mathematical Modeling of Structure Evolution in Phase Separating Polymer Systems
51
1.4.3 Experimental Efforts
64
1.4.4 Determination of Phenomenological Diffusivities from Numerical and Experimental Data
86
1.4.5 Nomenclature
88
1.5 Phase Separation Kinetics in Reactive Polymer Systems
89
1.5.1 Derivation of the Spinodal Decomposition Equation with the Reaction Term
90
1.5.2 Numerical Simulation for Reactive Polymer Phase Separation Systems
92
1.5.3 Results and Discussion
95
1.5.4 Nomenclature
96
References
98
2 The FRRPP Concept 103
2.1 Connection to Nanotechnology
103
2.1.1 Formation of Reactive Polymer Nanoparticles
104
2.1.2 Agglomeration of Nanoparticles in a Stirred Vessel
107
2.1.3 Light Scattering
109
2.1.4 Proton and 13C-NMR Studies
110
2.1.5 IR Imaging Study
112
2.1.6 Coil-to-Globule Transition
116
2.2 Local Heating and Energy Analysis of the FRRPP Process
117
2.2.1 Notional Concept
117
2.2.2 Case Studies
118
2.2.3 Energy Analysis of Cases 1-2
124
2.2.4 Glass Tube Reactor Experiment with Release of Reaction Fluid
126
2.2.5 Nomenclature
130
2.3 FRRPP Polymerization Kinetics
131
2.3.1 Polystyrene/Styrene-Based FRRPP Systems
131
2.3.2 Poly(Methacrylic Acid)/Methacrylic Acid/Water System
144
2.4 Predictions of FRRPP Behavior Through the Coil–Globule Transition
148
2.4.1 Thermodynamics of Ternary Polystyrene/Styrene/Ether System
150
2.4.2 Mass Transport Phenomena
151
2.4.3 Calculation of Kinetic Parameters and Polymer Formation Behavior
155
2.4.4 Thermal Analysis
158
2.4.5 Nomenclature
162
2.5 Physicochemical Quantitative Description of FRRPP
164
2.5.1 Nomenclature
170
References
171
3 Polymerization Processes 173
3.1 Statistical Polymerizations (Homopolymerizations and Multipolymerizations)
173
3.1.1 Introduction
173
3.1.2 Theory
174
3.1.3 Experimental
176
3.1.4 Results and Discussion
179
3.1.5 Nomenclature
186
3.2 Staged Multipolymerizations
188
3.2.1 Straightforward Addition of Another Monomer(s)
189
3.2.2 Interstage Rapid Cooling Method
190
3.2.3 Emulsion FRRPP
192
3.2.4 Emulsification of First-Stage Radicals
192
3.2.5 Radicalized Polymer Particulates
195
References
198
4 Product Materials 199
4.1 Homopolymers and Statistical Multipolymers
199
4.1.1 Homopolymers
199
4.1.2 Statistical Multipolymers
203
4.2 Block Multipolymers
209
4.3 Reactive Polymer Intermediates
213
4.3.1 PS-Based Intermediates
213
4.3.2 VDC Copolymer-Based Intermediates
214
4.3.3 VA/AA-Based Intermediates
222
4.4 Polymer Surfactants
223
4.5 Polymer Foams from the FRRPP Process
228
4.5.1 Vinyl Acetate-Acrylic Acid Copolymer Foams
228
4.5.2 Vinylidene Chloride Copolymer-Based Foams
228
4.5.3 VDC Multipolymer Nanocomposites in Polyurethane Foams
234
4.6 Coatings
238
4.6.1 Polystyrene-Poly(Dimethyl Siloxane) (PS–PDMS) Coatings
238
4.6.2 VA/AA with SWCNTs
244
4.7 Bottom-Up Micropatterning of Polymers
247
References
250
5 Related Energy Application of FRRPP Products, 253
5.1 Surfactant-Based Waterflooding for Subterranean Oil Recovery
253
5.1.1 Introduction
253
5.1.2 Theory
261
5.1.3 Experimental
261
5.1.4 Results and Discussion
263
5.2 Foamflooding Subterranean Enhanced Oil Recovery
265
5.2.1 Introduction
265
5.2.2 Experimental
267
5.2.3 Results and Discussion
267
5.3 Bitumen Recovery from Surface Sources
272
5.3.1 Introduction
272
5.3.2 Experimental
273
5.3.3 Results and Discussion
274
References
279
6 Outlook 281
6.1 Polymers for Defense and Homeland Security
281
6.1.1 Labeled Surfactants
281
6.1.2 Specialty Surfaces
284
6.1.3 Other Applications
286
6.2 Conceptual Connections to Nuclear Material Systems
287
6.2.1 Energy-Producing Isotopes
287
6.2.2 Nuclear Waste Materials
290
6.3 Fuel Cell Membranes
293
6.3.1 Proton Exchange Membrane (PEM) Fuel Cells
293
6.3.2 Hydroxide Exchange Membrane Alkali Fuel Cells (HEMFCs)
294
6.4 Medical Applications
295
6.4.1 Nanoparticle Polymers
295
6.4.2 Patterned Polymers
296
References
296
Appendix 299
A.1 Mathematical Modeling of Spinodal Decomposition
299
References
305
Index 307