Atjaunināt sīkdatņu piekrišanu

Frontier Problems In Quantum Mechanics [Hardback]

(Nankai Univ, China), (Tsinghua Univ, China)
  • Formāts: Hardback, 1092 pages
  • Izdošanas datums: 16-Oct-2018
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9813146842
  • ISBN-13: 9789813146846
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 68,44 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 1092 pages
  • Izdošanas datums: 16-Oct-2018
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9813146842
  • ISBN-13: 9789813146846
Citas grāmatas par šo tēmu:
"Owing to efforts in both theoretical and experimental research, a better understanding of the interpretation and many fundamental principles of quantum mechanics has been achieved. These include the complementarity principle, the geometrical phase, the topological phase, the boundary between quantum and classical mechanics, quantum mechanics on the macroscopic level, and so on. Part of this book is devoted to introducing these developments. Significant progress in the frontier research in various branches of physics has been achieved by making use of the insights and judgements originating from quantum mechanics. Part of this book is devoted to introducing some of these fields, namely quantum information, cavity quantum electrodynamics, the quantum Halleffect and the Bose-Einstein condensation. Basic physical ideas and methods are emphasized, instead of going into technical details. The Yang-Baxter system has become a prosperous field of mathematical physics. The last part of the book is devoted to introducing its application to some basic problems in quantum mechanics, and again basic physical ideas are emphasized"--
About the Authors v
Preface vii
Chapter 1 Wave-Particle Dualism, Complementarity Principle, Bell's Theorem and Related Experiments
1(124)
1.1 The Buildup of the Electron Interference Pattern
5(6)
1.2 Experimental Verification of Complementarity Principle by Atomic Interferometry
11(13)
1.3 Verification of Complementarity by Quantum Optical Experiments
24(5)
1.4 Single Photon Interference Experiment
29(8)
1.4.1 Interference between independent photon beams
34(3)
1.5 Multiparticle Interferometry
37(14)
1.5.1 Two-particle double-slit interferometry
37(3)
1.5.2 Interference experiment of a pair of down-converted photons
40(4)
1.5.3 Interference between different emission times
44(3)
1.5.4 Coherence and the distinguishability of paths
47(4)
1.6 Double Photon Interferometer as a Quantum Eraser
51(12)
1.7 Dispute between Einstein and Bohr on Quantum Mechanics, Bell's Theorem
63(12)
1.7.1 Criticism by Einstein in 1930: "quantum mechanics is not self-consistent"
63(2)
1.7.2 The Einstein-Podolsky-Rosen paradox: "quantum mechanical description is incomplete"
65(4)
1.7.3 Bell's theorem
69(3)
1.7.4 Bell's inequality generalized to real systems
72(3)
1.8 Experimental Verifications of Bell's Inequality
75(9)
1.9 Wheeler's Delayed Choice Experiment
84(5)
1.10 Bell's Theorem without Inequalities
89(27)
1.10.1 Complete correlation between three particles
89(5)
1.10.2 Bell's theorem without inequalities: Two-particle correlation
94(5)
1.10.3 Experimental verification of Bell's theorem without inequalities for two-particle systems
99(3)
1.10.4 Experimental realization of 3-photon entangled states
102(6)
1.10.5 EPR paradox in the context of entanglement and non-locality
108(5)
1.10.6 Non-locality of a single photon
113(3)
1.11 A Brief Introduction to Quantum Non-Demolition Experiment
116(9)
1.11.1 The standard quantum limit and the Back Action Evading (BAE) experiments
117(3)
1.11.2 The quantum non-demolition experiment
120(2)
References
122(3)
Chapter 2 Quantum Entanglement and Its Applications to Quantum Information and Quantum Computing
125(34)
2.1 A Brief Introduction to Quantum Computing
126(9)
2.1.1 Quantum data and data processing
126(2)
2.1.2 Quantum parallelism and efficient quantum algorithms
128(2)
2.1.3 Quantum information
130(5)
2.2 Quantum Entanglement
135(10)
2.2.1 Density matrix characterization of an entangled state
135(3)
2.2.2 Schmidt decomposition
138(3)
2.2.3 More about EPR-Bell states
141(4)
2.3 Entanglement in Applications to Quantum Information
145(7)
2.3.1 Dense coding
145(1)
2.3.2 Quantum cryptography: EPR quantum key distribution
146(2)
2.3.3 The quantum no-cloning theorem
148(2)
2.3.4 Quantum teleportation
150(2)
2.4 Six-photon Singlet --- An Example of Decoherence Free States
152(3)
2.5 Epilogue
155(4)
References
157(2)
Chapter 3 Geometrical Phases in Quantum Mechanics
159(50)
3.1 Aharonov-Bohm Effect
160(7)
3.2 Experimental Verifications of Aharonov-Bohm Effect
167(7)
3.3 Aharonov-Casher Effect
174(3)
3.4 Parallel Transport, Connexion, Curvature and Anholonomy
177(8)
3.5 Berry's Phase
185(10)
3.6 Aharonov-Anandan Phase
195(2)
3.7 Experimental Revelations of Berry's Phase
197(12)
3.7.1 Manifestation of Berry's phase in the rotation of polarization of a photon
199(2)
3.7.2 Manifestation of Berry's phase in neutron spin rotation
201(3)
3.7.3 Adiabatic rotational splitting and Berry's phase in nuclear quadrupole resonance
204(3)
References
207(2)
Chapter 4 Boundary between Quantum and Classical Mechanics, Entanglement and Decoherence
209(106)
4.1 Schrodinger's Harmonic Oscillator Wave Packets, Coherent States
212(11)
4.1.1 Basic properties of coherent states
215(2)
4.1.2 Canonical coherent states
217(6)
4.2 Circular Orbit Wave Packet and the Radial Wave Packet of the Hydrogen Atom
223(9)
4.3 50(4) Symmetry of H atom, the Runge-Lenz Vector and the Kepler Elliptic Orbit Wave Packet
232(26)
4.3.1 The Runge-Lenz Vector of the Classical Kepler motion
233(3)
4.3.2 The quantum mechanical Runge-Lenz vector, the dynamical symmetry and the energy spectrum of the hydrogen atom
236(4)
4.3.3 Construction of the Kepler Elliptic Orbit
240(7)
4.3.4 Rutherford atom in quantum mechanics
247(11)
4.4 Revivals and Fractional Revivals of the Wave Packets
258(4)
4.5 Principle of Superposition of States and the Quantum Decoherence
262(7)
4.6 Decoherence due to Interaction with Environment
269(6)
4.7 A Dynamical Model of Decoherence
275(4)
4.8 Classical Limit of Quantum Dynamics
279(4)
4.9 Schrodinger Cat Realized in the Laboratory
283(21)
4.9.1 A Schrodinger cat at single atom level
283(8)
4.9.2 A phase Schrodinger cat
291(6)
4.9.3 A macroscopic cat
297(5)
4.9.4 Decoherence by the emission of thermal radiations
302(2)
4.10 The Collapse of Wave Function and the Quantum Zeno Effect
304(3)
4.11 The Squeeze Operator and the Squeezed Coherent State
307(8)
References
313(2)
Chapter 5 Path Integral Formulation of Quantum Mechanics
315(54)
5.1 The Path Integral in Quantum Mechanics
316(13)
5.2 The Instanton and the Coherence Splitting of Energy Levels in a Double Well
329(8)
5.3 The Density Matrix and the Path Integral
337(10)
5.4 Instanton Method for a Decaying State
347(22)
5.4.1 Penetration of the "quadratic plus cubic" potential
354(8)
5.4.2 Shifting method for evaluating the second order variation in path integrals
362(2)
5.4.3 Alternative Evaluation of the Prefactor for the Harmonic Oscillator
364(3)
References
367(2)
Chapter 6 Quantum Mechanics on the Macroscopic Level
369(104)
6.1 Wave Function with a Macroscopic Significance
370(8)
6.2 Coupled Superconductors, Josephson Effect
378(8)
6.3 Superconducting Loop with a Josephson Junction, the SQUID
386(7)
6.4 Macroscopic Quantum Tunneling and Macroscopic Quantum Coherence in Josephson Systems
393(7)
6.5 The Influence of Environment on the Macroscopic Quantum Phenomena
400(28)
6.5.1 On the Canonical Transformations and the Adiabatic Approximation
402(3)
6.5.2 The Hamiltonian of a Dissipative Electromagnetic System
405(3)
6.5.3 The Non-adiabatic Correction, The Lagrangian of a Dissipative System
408(6)
6.5.4 Relation between Macroscopic Dissipation Parameter and the Microscopic Parameters
414(1)
6.5.5 Dissipation and the Macroscopic Quantum Tunneling
415(8)
6.5.6 Dissipation and the Macroscopic Quantum Coherence
423(5)
6.6 Experiments on the Macroscopic Quantum Tunneling in Josephson Systems
428(4)
6.7 Macroscopic Quantum Tunneling of Magnetism, the Spin Coherent State
432(6)
6.8 Macroscopic Quantum Phenomena of Single Domain Ferromagnetic Particles
438(11)
6.8.1 Quantum Coherence: Tunneling Splitting of Energy States
439(2)
6.8.2 The Quantum Tunneling
441(3)
6.8.3 Quantum Interference Phenomena, the Topological Quenching
444(5)
6.9 Macroscopic Quantum Phenomena of Single Domain Antiferromagnetic Particles
449(5)
6.10 Experiments on the Macroscopic Quantum Tunneling of Magnetic Systems
454(5)
6.11 Macroscopic Quantum Phenomena of Macromolecules
459(6)
6.12 Quantum Mechanical Foundation of the Spin-parity Effect
465(8)
References
470(3)
Chapter 7 Topological Phase Factors in Quantum Systems
473(52)
7.1 Spin Wave Theory in the Heisenberg Model
475(13)
7.2 O(3) Non-Linear Sigma Model, the Spontaneous Symmetry Breakdown and the Goldstone Theorem
488(4)
7.3 One-dimensional Quantum Antiferromagnetic Chain, Topological Phase Factor, Large-s Mapping Onto O(3) Non-linear Sigma Model
492(10)
7.4 Lieb-Schultz-Mattis Theorem
502(4)
7.5 The Significance of the Topological Term
506(4)
7.6 The Vacuum of the non-Abelian Gauge Fields
510(8)
7.6.1 The non-Abelian gauge fields
510(2)
7.6.2 The equivalent classes of gauge transformations
512(3)
7.6.3 The Vacuum
515(3)
7.7 The Topological Term and the Anomalies
518(7)
References
522(3)
Chapter 8 Cavity Quantum Electrodynamics, van der Waals Forces and Casimir Effect
525(142)
8.1 Interaction between the Radiation Field and an Atom
527(17)
8.1.1 Quantization of the field of electron in an atom
527(1)
8.1.2 Quantization of the radiation field
528(3)
8.1.3 Interacting electron field and radiation field, the rate of spontaneous emission
531(4)
8.1.4 Dark states, electromagnetically induced transparency
535(9)
8.2 Jaynes-Cummings Model
544(9)
8.2.1 The eigenstates of the coupled atom-cavity system
545(3)
8.2.2 The light shift of the atomic energy levels in the non-resonant case
548(4)
8.2.3 The evolution of state in time
552(1)
8.3 The Suppression and Enhancement of Spontaneous Emission
553(4)
8.4 The Micromaser
557(4)
8.5 The Inverse Stern-Gerlach Effect
561(3)
8.6 The Atom-Cavity Dispersive Phase Shift Effects
564(11)
8.6.1 Quantum non-demolition detection (QND) of a single photon, QND of the birth and death of single photons
570(5)
8.7 Entangled States in Cavity QED
575(4)
8.8 Response of a System to External Disturbances, the Fluctuation-Dissipation Theorem
579(15)
8.8.1 The frequency dependence of the permittivity, the Kramers-Kronig dispersion relation
580(4)
8.8.2 The correlation between fluctuations and the generalized polarizability
584(4)
8.8.3 The fluctuation-dissipation theorem
588(6)
8.9 The van der Waals Interaction
594(4)
8.10 The Effect of Retardation on the van der Waals Interaction
598(8)
8.10.1 The field of an oscillating dipole
598(3)
8.10.2 The fluctuation of electromagnetic field in a homogeneous medium
601(4)
8.10.3 The Casimir-Polder interaction
605(1)
8.11 Zero-point Energy, Vacuum Fluctuation of the Electromagnetic Field and the van der Waals Interaction
606(9)
8.12 The Casimir Effect
615(4)
8.13 Cavity QED in Strong Coupling Regime
619(6)
8.14 Radiative Corrections
625(6)
8.14.1 Spontaneous radiative correction: Free electron
626(2)
8.14.2 Spontaneous radiative correction: The bound electron
628(2)
8.14.3 Stimulated radiative corrections
630(1)
8.15 Interaction with Monochromatic Radiation, Bloch Sphere, and Light Shift
631(6)
8.15.1 Population change and Bloch sphere
631(3)
8.15.2 Light shift
634(3)
8.16 Renormalization in Quantum Field Theory
637(6)
8.17 Renormalization Group Approach
643(24)
8.17.1 Renormalization group flow
643(3)
8.17.2 Physics on different energy scales
646(3)
8.17.3 Anderson localization
649(1)
8.17.4 Path to phase transition and critical phenomena
650(8)
8.17.5 0(n) Non-linear sigma model in d dimensions, weak coupling approximation
658(6)
References
664(3)
Chapter 9 The Quantum Hall Effect
667(134)
9.1 The Classical Hall Effect
668(1)
9.2 Electrons in Uniform Magnetic Field, the Landau Level
669(7)
9.3 Quantization of Magnetic Flux
676(2)
9.4 The Integral Quantum Hall Effect
678(16)
9.4.1 Magnetic translation, topological significance of the Hall conductance
689(5)
9.5 Fractional Quantum Hall Effect, Laughlin Wave Function
694(37)
9.5.1 Quantized motion of a small number of electrons
696(6)
9.5.2 Laughlin wave function for the v = 1/m states
702(6)
9.5.3 Quasiparticle excitations
708(3)
9.5.4 Collective modes in the incompressible quantum Hall liquid
711(10)
9.5.5 Gapless edge states of fractional quantum Hall liquids
721(7)
9.5.6 Hierarchy states of the fractional quantum Hall effect
728(1)
9.5.7 The composite Fermion, Jain's construction
729(2)
9.6 The Landau-Ginzburg Theory of the Fractional Quantum Hall Effect
731(15)
9.6.1 Zhang-Hansson-Kivelson mapping, the Chern-Simons-Landau-Ginzburg action
732(5)
9.6.2 The mean field solution, phenomenology of the fractional quantum Hall effect
737(3)
9.6.3 The algebraic off-diagonal long-range order
740(3)
9.6.4 Topological order of the fractional quantum Hall fluid
743(3)
9.7 The Global Phase Diagram of the Quantum Hall Effect
746(7)
9.8 Quantum Spin Hall Effect
753(8)
9.9 Topology in the Physics of 2 + 1 Dimensions, Anomalous Quantum Hall Effect
761(23)
9.9.1 The 3 + 1 dimensional chiral anomaly
762(4)
9.9.2 2 + 1 dimensional Dirac Field interacting with Gauge Field
766(2)
9.9.3 Topologically non-trivial vacuum current with abnormal parity
768(2)
9.9.4 Relation between fractional charge, vacuum current and zero mode
770(3)
9.9.5 A condensed matter simulation of the 2 + 1 D anomaly
773(7)
9.9.6 Anomalous quantum Hall effect
780(4)
9.10 Topology in Condensed Matter Physics, the Topological Insulators and Superconductors
784(17)
9.10.1 The quantum spin Hall insulator, topological classifications
787(4)
9.10.2 Topological Superconductors, Majorana fermions
791(6)
References
797(4)
Chapter 10 Bose-Einstein Condensation
801(130)
10.1 Some Fundamental Relations Pertaining to the Bose-Einstein Condensation
803(14)
10.1.1 The BEC as a quantum statistical phenomenon
804(1)
10.1.2 The Bose-Einstein temperature
805(2)
10.1.3 Thermodynamic properties of Bose gas
807(10)
10.2 Order Parameter of Bose-Einstein Condensation, the Off-Diagonal Long Range Order
817(3)
10.3 The Nature of Bose-Einstein Condensation: The Spontaneous Symmetry-Breaking and the Phase Coherence
820(14)
10.4 Weakly Interacting Bose Gas: Homogeneous Condensate
834(12)
10.4.1 Bogoliubov Theory of Weakly Interacting Bose Gas
835(8)
10.4.2 Non-ideal Bose gas
843(3)
10.5 Weakly Interacting Bose Gas: Inhomogeneous Condensate
846(18)
10.5.1 Dependence of the properties of the condensation on the external fields
846(4)
10.5.2 Bose-Einstein condensation of weakly interacting Bose gas in a trap
850(6)
10.5.3 Gross-Pitaevskii equation
856(3)
10.5.4 The quantum phase dynamics
859(5)
10.6 Bose-Einstein Condensation in Anisotropic Potential Traps
864(5)
10.7 Vortices and the Stability of Bose-Einstein Condensates against Attractive Interactions
869(7)
10.8 The Spinor Condensate
876(15)
10.8.1 Ground state structure
878(3)
10.8.2 Collective modes of trapped spinor condensate
881(2)
10.8.3 Intrinsic stability of vortices in the ferromagnetic state
883(2)
10.8.4 Coreless vortices
885(1)
10.8.5 Fragmented condensates
885(6)
10.9 Cold Bosonic Atoms in Optical Lattices
891(14)
10.10 Feshbach Resonance and Resonance Superfluidity
905(26)
10.10.1 The Feshbach resonance
906(5)
10.10.2 The degenerate Fermi gas
911(3)
10.10.3 Molecules formed by Fermi atoms and the molecular condensates
914(2)
10.10.4 Condensates of the pairs of Fermi atoms
916(10)
References
926(5)
Chapter 11 The Yangian Commutation Relations in Quantum Mechanics
931(40)
11.1 Tensor Operators for the Hydrogen Atom and the Yangian
932(5)
11.2 The Yangian Algebras
937(5)
11.3 Other Realizations of Y(SL(2)) in Quantum Mechanics
942(8)
11.4 The One-dimensional Chain Model of Long-range Interaction
950(7)
11.5 The Hubbard Model
957(8)
11.6 Yangian Transition between the Singlet and Octet in SU{3)
965(6)
References
969(2)
Chapter 12 RTT Relation and the Yang-Baxter Equation, Physical Significance of the Quantum Algebras
971
12.1 Commutation Relations in Direct Product Form of Matrices
972(10)
12.2 The RTT Relation
982(4)
12.3 Yang-Baxter Equation
986(7)
12.4 Sets of Conserved Quantities, the Hamiltonian
993(8)
12.5 The Quantum Determinant, and the Co-product
1001(10)
12.6 Expansion of the RTT Relation and the Commutation Relations
1011(3)
12.7 The Hydrogen Atom and the RTT Relation
1014(5)
12.8 Representations of Yangian and the Hydrogen Atomic Spectrum
1019(9)
12.9 Yangian and the Bell Basis
1028(2)
12.10 Transition from S- To P-wave Superconductivity
1030(5)
12.11 Quantum Algebras
1035(5)
12.12 Bi-frequency Harmonic Oscillators and the Commutation Relations of Quantum Algebras
1040(6)
12.13 The Translation Operators for the Coherent States and the Hofstadter model
1046(6)
12.14 The Cyclic Representation of the Quantum Algebras
1052
References
1061