Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics

(Peoples Friendship University of Russia, Moscow)
  • Formāts: 328 pages
  • Izdošanas datums: 16-Feb-2011
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781439806432
  • Formāts - PDF+DRM
  • Cena: 86,40 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 328 pages
  • Izdošanas datums: 16-Feb-2011
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781439806432

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

At the interface between chemistry, biology, and physics, fullerenes were one of the first objects to be dissected, scanned, and studied by the modern multi-specialty biotech community and are currently thriving in both research and practical application. Other members of the sp2 nanocarbon family, such as nanotubes and graphene, are currently being studied with the vigor equal to or greater than of the early days of buckminsterfullerene.

Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics utilizes a computational platform to embrace two distinguishing fullerene features: odd electrons and exclusive donor-acceptor abilities. The author showcases fullerene nanoscience from a computational viewpoint, intertwining theory and experiment to elucidate key concepts in fullerene science and future avenues of exploration. The author uses fullerene membership in sp2 nanocarbon nanoscience to demonstrate the intimate similarity in the behavior of fullerene, carbon nanotubes, and grapheme.

The majority of available books on fullerenes and nanocarbons are collected works and reviews of authors with varying views and interests. While playing a vital role in the developments of nanoscience, these collections do not present a coherent analysis of the status of the field. This book, on the other hand, presents a unified introduction to the multidisciplinary world of fullerene nanoscience based on a single paradigm of concepts, terminology, and ideas. The conceptual approach is accessible, deeply grounded by quantum theory, and easily adapted to both modern computers and the classroom.
Preface xi
About the author xiii
Acknowledgments xv
Chapter 1 Concepts and grounds
1(16)
1.1 Why odd electrons and not π electrons?
1(6)
1.2 Donor-acceptor ability as a leitmotiv of intermolecular interaction of fullerenes
7(6)
1.2.1 Energy terms of ground and excited states of a binary complex with intense D-A interaction
8(3)
1.2.2 Ionic components of a D-A binary system
11(2)
1.3 Odd electrons approach as a basic concept of nanoscience
13(4)
References
14(3)
Chapter 2 Grounds of computational science of fullerenes
17(14)
2.1 Unrestricted broken symmetry approach: Basic relations
17(6)
2.2 UBS approach realization in semiempirical calculation
23(1)
2.3 UBS HF approach testing
24(4)
2.4 UBS HF approach and fullerene nanoscience
28(3)
References
29(2)
Chapter 3 Fullerene C60 in view of the unrestricted broken symmetry Hartree-Fock approach
31(34)
3.1 Introduction
31(1)
3.2 Structure and symmetry
32(19)
3.2.1 C60 shape symmetry: Structural experiments
33(1)
3.2.2 C60 shape symmetry: Quantum chemical calculations
33(4)
3.2.3 C60 shape symmetry: Optical spectra
37(2)
3.2.4 Continuous symmetry concept
39(2)
3.2.5 Continuous symmetry of fullerene C60 and its monoderivatives
41(4)
3.2.6 Continuous symmetry view on optical electronic spectra of fullerene C60 and its derivatives
45(6)
3.3 Total spin (S2)
51(1)
3.4 Chemical reactivity of fullerenes C60 and C70
52(5)
3.4.1 Chemical portrait of fullerene C60
53(3)
3.4.2 Chemical portrait of fullerene C70
56(1)
3.5 C60 isomers
57(3)
3.6 Concluding remarks
60(5)
References
61(4)
Chapter 4 Nanochemistry of fullerene C60: Stepwise computational synthesis of fluorinated fullerenes C60F2k
65(30)
4.1 Introduction
65(2)
4.2 Background and the problem formulation
67(4)
4.2.1 A historical background
67(3)
4.2.2 ACS algorithm of computational synthesis of fullerenes' derivatives
70(1)
4.3 Reactions of C60 fluorination
71(17)
4.3.1 Start of C60 fluorination
71(3)
4.3.2 C60F2--C60F8 adducts
74(4)
4.3.3 C60F10--C60F18 adducts
78(2)
4.3.4 C60F20--C60F36 adducts
80(2)
4.3.5 C60F38--C60F48 adducts
82(5)
4.3.6 C60F50-C60F60 adducts
87(1)
4.4 Fluorination-induced C60 cage structure transformation
88(3)
4.5 Concluding remarks
91(4)
References
91(4)
Chapter 5 Nanochemistry of fullerene C60: Hydrogenated fullerenes from C60 to C60 to 60
95(18)
5.1 Grounds of computational methodology
95(2)
5.2 C60 hydrogenation as algorithmic process
97(5)
5.3 Comparative efficacy of fluorination and hydrogenation reactions
102(2)
5.4 C60 cage structure transformation during hydrogenation
104(4)
5.5 Comparison with experiments
108(3)
5.6 Concluding remarks
111(2)
References
111(2)
Chapter 6 Nanochemistry of fullerene C60: Cyano- and azo-polyderivatives
113(20)
6.1 Introduction
113(1)
6.2 Grounds of computational methodology
114(1)
6.3 Polyhydrocyanides C60H(CN)2n--1 and polycyanides C60(CN)2n
114(6)
6.4 Polyazoderivatives C60(NH)m
120(6)
6.5 Concluding remarks: A little about C60 chlorination
126(7)
References
130(3)
Chapter 7 Nanochemistry of fullerene C60: Donor-acceptor reactions of fullerene C60 with amines
133(16)
7.1 Introduction
133(1)
7.2 About intermolecular interaction and donor-acceptor chemical reactions
134(2)
7.3 Donor-acceptor reactions for fullerene dyads with different types of intermolecular interaction terms
136(4)
7.3.1 Methodology of a D-A dyad consideration
136(1)
7.3.2 Molecular partners
137(1)
7.3.2.1 Dimethylenemethylamine (DMMA)
137(1)
7.3.2.2 Tetrakis(dimethylamino)ethylene (TDAE)
137(1)
7.3.2.3 Tetrakisaminoethylene (TAE)
138(1)
7.3.2.4 2-Cyclooctylamine-5-nitropyridine (COANP)
138(1)
7.3.3 Molecular ions
138(2)
7.4 C60-based dyads
140(6)
7.4.1 Dyad C60-DMMA
140(3)
7.4.2 Dyad C60-TDAE
143(1)
7.4.3 Dyad C60-TAE
144(1)
7.4.4 Dyad C60-COANP
145(1)
7.5 Concluding remarks about donor-acceptor chemical reactions of fullerene C60
146(3)
References
147(2)
Chapter 8 Nanochemistry of fullerene C60: C60 dimerization and oligomerization
149(26)
8.1 Introduction
149(1)
8.2 Ground-state term of the C60--C60 dyad
150(5)
8.3 Dimerization mechanisms
155(6)
8.3.1 Photoexcitation technology
157(1)
8.3.2 Thermal and high-pressure technologies
158(1)
8.3.3 Plasma and electron beam processing
158(1)
8.3.4 Field-stimulated formation and decomposition of dimers
158(3)
8.4 C60 oligomers
161(8)
8.4.1 Polymerization grounds
161(4)
8.4.2 Structural data
165(3)
8.4.3 Binding energies in oligomers
168(1)
8.5 Concluding remarks about the character of chemical reactions typical to fullerene
169(6)
References
172(3)
Chapter 9 Nanomedicine of fullerene C60
175(20)
9.1 Introduction
175(2)
9.2 Spin-flip in the oxygen molecule in fullerene solutions
177(3)
9.3 Fullerene-silica complexes for medicinal chemistry
180(10)
9.3.1 C60 fullerene-highly dispersed silica composite
182(1)
9.3.1.1 Aerosil (PNSS)
182(1)
9.3.1.2 Silica gel (SCG)
182(1)
9.3.1.3 Aerogel
183(1)
9.3.2 Fullerosil
184(2)
9.3.3 Fullerosilica gel
186(4)
9.4 Concluding remarks on the nature of the biological activity of fullerene
190(5)
References
191(4)
Chapter 10 Nanophotonics of fullerenes
195(26)
10.1 Introduction
195(1)
10.2 Schematic characterization of the excited states and optical spectra of fullerenes in solution
195(3)
10.3 Electromagnetic theory of enhanced optical effects
198(4)
10.4 Absorption and emission spectra of fullerenes in solution
202(5)
10.5 Quantum chemical analysis of intermolecular interactions in solutions of fullerenes
207(4)
10.6 Blue emission, pairwise interaction, and efficacy of nonlinear optical behavior
211(4)
10.7 And again about blue emission, photodynamic therapy, and nanophotonics of fullerene solutions
215(2)
10.8 Nanophotonics of fullerenes in chemistry, medicine, and optics
217(4)
References
218(3)
Chapter 11 Odd electron-enhanced chemical reactivity of carbon nanotubes
221(22)
11.1 Introduction
221(1)
11.2 Chemical reactivity of carbon nanotubes
221(14)
11.2.1 (4,4) Single-walled carbon nanotubes
223(1)
11.2.1.1 Fragments of group 1
224(5)
11.2.1.2 Fragments of group 2
229(1)
11.2.1.3 Fragments of group 3
229(2)
11.2.2 (n,n) and (m,0) Single-walled carbon nanotubes
231(1)
11.2.2.1 (n,n) Single-walled carbon nanotubes
231(2)
11.2.2.2 (m,0) Single-walled carbon nanotubes
233(2)
11.3 General view on single-walled carbon nanotubes' chemical reactivity
235(2)
11.4 Comparison with experiment
237(1)
11.5 Electronic characteristics of single-walled carbon nanotubes
238(5)
References
240(3)
Chapter 12 Chemical reactivity of graphene
243(22)
12.1 Introduction
243(1)
12.2 Broken symmetry Hartree-Fock approach to chemical reactivity of graphene
244(3)
12.3 Carbon nanotube-graphene composites
247(12)
12.3.1 Grounds for the computational synthesis of (I)k (II)l composites
248(1)
12.3.2 Hammer (I)1,2 (II)1,2 composites
249(2)
12.3.2.1 Composites I
251(1)
12.3.2.2 Composites II
251(1)
12.3.2.3 Composites III
251(1)
12.3.2.4 Composites IV
252(1)
12.3.3 Cutting-blade (I)1,2 (II)1,2 composites
252(1)
12.3.3.1 Composites V
253(1)
12.3.3.2 Cross-sections VI
253(2)
12.3.3.3 Composites VII and VIII
255(2)
12.3.3.4 Composites IX
257(1)
12.3.3.5 Cross-section X
257(1)
12.3.3.6 Composites XI
257(1)
12.3.3.7 Composite XII
258(1)
12.4 Concluding remarks
259(2)
12.5 Synopsis of features concerned with chemical reactivity of nanocarbons
261(4)
12.5.1 Fullerenes
261(1)
12.5.2 Single-walled nanotubes
261(1)
12.5.3 Graphene
262(1)
References
262(3)
Chapter 13 Magnetism of fullerenes and graphene
265(18)
13.1 Introduction
265(1)
13.2 Why are C60 and C70 molecules nonmagnetic?
266(1)
13.3 Effectively unpaired electrons in monomer molecules of oligomers
267(5)
13.3.1 Peculiarities in the odd electrons behavior
268(4)
13.3.2 Exchange integral J
272(1)
13.4 Nanostructures and magnetism in polymeric C60 crystals
272(1)
13.5 Magnetism of zigzag edge nanographenes
273(4)
13.6 About size-dependent magnetism
277(1)
13.7 Odd electrons as they are seen today
278(5)
References
278(5)
Chapter 14 Chemical and structural analogs of sp2 nanocarbons
283(8)
14.1 Siliceous nanostructures
283(5)
14.2 Boron nitride hexagon-packed species
288(3)
References
289(2)
Chapter 15 Conclusion
291(4)
Index 295
Professor Elena F. Sheka is the principal scientist of the Research Department and a scientific curator of the Laboratory of Computational Nanotechnology of the General Physics Department at the Russian Peoples Friendship University (RPFU).