Atjaunināt sīkdatņu piekrišanu

E-grāmata: Functional Analysis

  • Formāts: 466 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 08-Aug-2018
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470447762
  • Formāts - PDF+DRM
  • Cena: 106,02 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 466 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 08-Aug-2018
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470447762

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Functional analysis is a central subject of mathematics with applications in many areas of geometry, analysis, and physics. This book provides a comprehensive introduction to the field for graduate students and researchers. It begins in Chapter 1 with an introduction to the necessary foundations, including the Arzela-Ascoli theorem, elementary Hilbert space theory, and the Baire Category Theorem. Chapter 2 develops the three fundamental principles of functional analysis (uniform boundedness, open mapping theorem, Hahn-Banach theorem) and discusses reflexive spaces and the James space. Chapter 3 introduces the weak and weak$^*$ topologies and includes the theorems of Banach-Alaoglu, Banach-Dieudonne, Eberlein-Smulyan, Krein-Milman, as well as an introduction to topological vector spaces and applications to ergodic theory. Chapter 4 is devoted to Fredholm theory. It includes an introduction to the dual operator and to compact operators, and it establishes the closed image theorem. Chapter 5 deals with the spectral theory of bounded linear operators. It introduces complex Banach and Hilbert spaces, the continuous functional calculus for self-adjoint and normal operators, the Gelfand spectrum, spectral measures, cyclic vectors, and the spectral theorem. Chapter 6 introduces unbounded operators and their duals. It establishes the closed image theorem in this setting and extends the functional calculus and spectral measure to unbounded self-adjoint operators on Hilbert spaces. Chapter 7 gives an introduction to strongly continuous semigroups and their infinitesimal generators. It includes foundational results about the dual semigroup and analytic semigroups, an exposition of measurable functions with values in a Banach space, and a discussion of solutions to the inhomogeneous equation and their regularity properties. The appendix establishes the equivalence of the Lemma of Zorn and the Axiom of Choice, and it contains a proof of Tychonoff's theorem. With 10 to 20 elaborate exercises at the end of each chapter, this book can be used as a text for a one-or-two-semester course on functional analysis for beginning graduate students. Prerequisites are first-year analysis and linear algebra, as well as some foundational material from the second-year courses on point set topology, complex analysis in one variable, and measure and integration.
Preface ix
Introduction xi
Chapter 1 Foundations
1(48)
§1.1 Metric: Spaces and Compact Sets
2(15)
§1.2 Finite-Dimensional Banach Spaces
17(8)
§1.3 The Dual Space
25(6)
§1.4 Hilbert Spaces
31(4)
§1.5 Banach Algebras
35(5)
§1.6 The Baire Category Theorem
40(5)
§1.7 Problems
45(4)
Chapter 2 Principles of Functional Analysis
49(60)
§2.1 Uniform Boundedness
50(4)
§2.2 Open Mappings and Closed Graphs
54(11)
§2.3 Hahn--Banach and Convexity
65(15)
§2.4 Reflexive Banach Spaces
80(21)
§2.5 Problems
101(8)
Chapter 3 The Weak and Weak* Topologies
109(54)
§3.1 Topological Vector Spaces
110(14)
§3.2 The Banach--Alaoglu Theorem
124(6)
§3.3 The Banach--Dieudonne Theorem
130(4)
§3.4 The Eberlein--Smulyan Theorem
134(6)
§3.5 The Krein--Milman Theorem
140(4)
§3.6 Ergodic Theory
144(9)
§3.7 Problems
153(10)
Chapter 4 Fredholm Theory
163(34)
§4.1 The Dual Operator
164(9)
§4.2 Compact Operators
173(6)
§4.3 Fredholm Operators
179(5)
§4.4 Composition and Stability
184(5)
§4.5 Problems
189(8)
Chapter 5 Spectral Theory
197(98)
§5.1 Complex Banach Spaces
198(10)
§5.2 Spectrum
208(14)
§5.3 Operators on Hilbert Spaces
222(12)
§5.4 Functional Calculus for Self-Adjoint Operators
234(12)
§5.5 Gelfand Spectrum and Normal Operators
246(15)
§5.6 Spectral Measures
261(20)
§5.7 Cyclic Vectors
281(7)
§5.8 Problems
288(7)
Chapter 6 Unbounded Operators
295(54)
§6.1 Unbounded Operators on Banach Spaces
295(11)
§6.2 The Dual of an Unbounded Operator
306(7)
§6.3 Unbounded Operators on Hilbert Spaces
313(13)
§6.4 Functional Calculus and Spectral Measures
326(16)
§6.5 Problems
342(7)
Chapter 7 Semigroups of Operators
349(96)
§7.1 Strongly Continuous Semigroups
350(13)
§7.2 The Hille--Yosida--Phillips Theorem
363(14)
§7.3 The Dual Semigroup
377(11)
§7.4 Analytic Semigroups
388(16)
§7.5 Banach Space Valued Measurable Functions
404(21)
§7.6 Inhomogeneous Equations
425(14)
§7.7 Problems
439(6)
Appendix A Zorn and Tychonoff
445(8)
§A.1 The Lemma of Zorn
445(4)
§A.2 Tychonoff's Theorem
449(4)
Bibliography 453(6)
Notation 459(2)
Index 461